225 resultados para phase separation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface morphology evolution of three thin polystyrene (PS)/polymethyl methacrylate (PMMA) blend films (<70 nm) on SiOx substrates upon annealing were investigated by atomic force microscopy (AFM) and some interesting phenomena were observed. All the spin-coated PS/PMMA blend films were not in thermodynamic equilibrium. For the 67.1 and the 27.2 nm PS/PMMA blend films, owing to the low mobility of the PMMA-rich phase layer at substrate surfaces and interfacial stabilization caused by long-range van der Waals forces of the substrates, the long-lived metastable surface morphologies (the foam-like and the bicontinuous morphologies) were first observed. For the two-dimensional ultrathin PS/PMMA blend film (16.3 nm), the discrete domains of the PS-rich phases upon the PMMA-rich phase layer formed and the secondary phase separation occurred after a longer annealing time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blends of poly(ether-sulfone) (PES) and poly(phenylene sulfide) (PPS) with various compositions were prepared using an internal mixer at 290degreesC and 50 rpm for 10 min. The thermal and dynamic mechanical properties of PES/PPS blends have been investigated by means of DSC and DMA. The blends showed two glass transition temperatures corresponding to PPS-rich and PES-rich phases. Both of them decreased obviously for the blends with PES matrix. On the other hand, T-g of PPS and PES phase decreased a little when PPS is the continuous phase. In the blends quenched from molten state the cold crystallization temperature of PPS was detected in the blends of PES/PPS with mass ratio 50/50 and 60/40. The melting point, crystallization temperature and the crystallinity of blended PPS were nearly unaffected when the mass ratio of PES was less than 60%, however, when the amount of PES is over 60% in the blends, the crystallization of PPS chains was hindered. The thermal and the dynamic mechanical properties of the PPS/PES blends were mainly controlled by the continued phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of the concentration of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant in tris(8-quinolinolato) aluminum (Alq(3)) on the charge carrier transport in Alq(3):DCJTB was investigated by measuring the steady current-voltage characteristics and the transient electroluminescence. The dopant concentration dependence of the current-voltage relationship clearly indicates the carrier trapping by the DCJTB molecule. The DCJTB concentration significantly affects the electron mobility in Alq(3):DCJTB. The mobility has a nontrivial dependence on the doping level. For relatively low doping levels, less than 1%, the electron mobility of Alq(3):DCJTB decreases with the doping level. An increasing mobility is then observed if the dopant concentration is further increased, followed by a decrease for doping levels larger than similar to2%. The change of the electron mobility with the DCJTB concentration in Alq(3) is attributed to the additional energetic disorder due to potential fluctuations caused by the dipole-dipole interaction of random distribution dopant at the relatively low doping concentration, and to the phase separation at the high doping concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time, a novel prefractionation method used in proteomic analysis was developed, which is performed by a novel aqueous two-phase system (NATPS) composed of n-butanol, (NH4)(2)SO4, and water. It can separate proteomic proteins into multigroups by one-step extraction. The phase-separation conditions of n-butanol solutions were studied in the presence of commonly used inorganic salts. The NATPS was subsequently developed. Using human serum albumin, zein, and gamma-globulin as model proteins, the separation effectiveness of the NATPS for protein was studied under affection factors, i.e., pH, n-butanol volume, protein, or salt concentration. The model and actual protein samples were separated by the NATPS and then directly used for gel electrophoresis without separating the target proteins from phase-forming reagents. It revealed that the NATPS could separate proteomic proteins into multigroups by one-step extraction. The NATPS has the advantages of rapidity, simplicity, low cost, biocompability, and high efficiency. It need not separate target proteins from the phase-forming reagents. The NATPS has great significance in separation and extraction of proteomic proteins, as well as in methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports the synthesis of a novel maleimide-terminated thioetherimide oligomer and its copolymefization with reactive solvents bearing vinyl. Starting from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride, 2,2',3,3'-thiodiphenyl tertracaboxylic dianhydride (3,3'-TDPA) and 3,3',4,4'-thiodiphenyl tertracaboxylic dianhydride (4,4'-TDPA) were synthesized. Thereby, a novel maleimide-terminated thioetherimide oligomer was prepared from. 3,3-TDPA, 4,4'-TDPA, 3,3'-dimethyl-4,4-diaminodiphenylmethane (DMMDA) and maleic anhydride. Binary and ternary copolymer resin were derived from corresponding binary and ternary homogeous solution consisting of thioetherimide oligomer, reactive solvent N-vinylpyrrolidone (NVP) or N,N'-dimethylacrylamide (DMAA) and divinylbenzene (DVB) as modifier, initiated either by gamma ray irradiation or by benzoyl peroxide (BPO). Thermal and mechanical properties of copolymer resin are determined and compared in terms of the kind of reactive solvent, addition of modifier DVB. The effect of initiation approach on property of final copolymer resin were studied. Phase separation and sub-transition of ternary copolymer resin induced by BPO are observed, which could be accounted for by thermal movement of DMAA molecules during thermal initiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of solvent nature on the surface topographies of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blend films spin-coated onto the silicon wafer were investigated. Four different solvents, such as ethylbenzene, toluene, tetrahydrofuran and dichloromethane, were chosen. They are better solvents for PS than that for PMMA. When dichloromethane, tetrahydrofuran and toluene were used, PMMA-rich phase domains protruded from the background of PS. When ethylbenzene was used, PS-rich phase domains elevated on the average height of PMMA-rich phase domains. In addition, continuous pits, networks and isolated droplets consisted of PS formed on the blend film surfaces with the decrease of polymer concentrations. The mechanism of the surface morphology evolution was discussed in detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chain-length dependence of the Flory-Huggins (FH) interaction parameter is introduced into the FH lattice theory for polydisperse polymer-blend systems. The spinodals are calculated for the model polymer blends with different chain lengths and distributions. It is found that all the related variables r(n), r(w), r(z), and chain-length distribution, have effects on the spinodals for polydisperse polymer blends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer concentration and shear and stretch field effects on the surface morphology evolution of three different kinds of polymers (polystyrene (PS), polybutadiene (PB) and polystyrene-b-polybutadiene-b-polystyrene (SBS)) during the spin-coating were investigated by means of atomic force microscopy (AFM). For PS and SBS, continuous film, net-like structure and particle structure were observed at different concentrations. For PB, net-like structures were not observed and continuous films and radial array of droplets emerged. Moreover, we compared surface morphology transitions on different substrate locations from the center to the edge. For PS, net-like structure, broken net-like structure and irregular array of particles were observed. For SBS, net-like structure, periodically orientated string-like structure and broken-line structure appeared. But for PB, flower-like holes in the continuous film, distorted stream-like structure and irregular distributions of droplets emerged. These different transitions of surface morphologies were discussed in terms of individual material property.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface replacement reaction of thiol-derivatized, single-stranded oligonucleotide (HS-ssDNA) by mercaptohexanol (MCH) is investigated in order to reduce surface density of the HS-ssDNA adsorbed to Au(111) surface. Cyclic voltammograms (CVs) and scanning tunneling microscopy (STM) are employed to assess the composition and state of these mixed monolayers. It is found that each CV of mixed self-assembled monolayers (SAMs) only shows a single reductive desorption peak, which suggests that the resulted, mixed SAMs do not form discernable phase-separated domains. The peak potential gradually shifts to negative direction and the peak area increases step by step over the whole replacement process. By analyzing these peak areas, it is concluded that two MCH molecules will replace one HS-ssDNA molecule and relative coverage can also be estimated as a function of exposing time. The possible mechanism of the replacement reaction is also proposed. The DNA surface density exponentially reduces with the exposing time increasing, in other words, the replacement reaction is very fast in the first several hours and then gradually slows down. Moreover, the morphological change in the process is also followed by STM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3-trifluoro-methylbenzene side group (F-PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK-rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G' is larger than dynamic loss modulus G", showing the feature of elastic fluid. For F-PAEK-rich systems, the rheological behavior of the blends has a resemblance to pure F-PAEK, i.e., G" is greater than G', showing the characteristic of viscous fluid. When the PEEK content is in the range of 50-70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F-PAEK content. However, at 50% weight fraction of PEEK, the viscosity-composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The quasiliving characteristics of the ringopening polymerization of epsilon-caprolactone (CL) catalyzed by an organic amino calcium were demonstrated. Taking advantage of this feature, we synthesized a series of poly (F-caprolactone) (PCL)-poly(L-lactide) (PLA) cliblock copolymers with the sequential addition of the monomers CL and L-lactide. The block structure was confirmed by H-1-NMR, C-13-NMR, and gel permeation chromatography analysis. The crystalline structure of the copolymers was investigated by differential scanning calorimetry and wide-angle X-ray diffraction analysis. When the molecular weight of the PLA block was high enough, phase separation took place in the block copolymer to form PCL and PLA domains, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of the molecular weights (molecular weight of polystyrene, M-w,M-PS, varying from 2.9 to 129 k) on the surface morphologies of spin-coated and annealed polystyrene/poly (methyl methacrylate) (PS/PMMA = 50/50, w/w) blend films were investigated by atomic force microscopy and X-ray photoelectron spectroscopy. For the spin-coated films, when the M-w,M-PS varied from 2.9 to 129 k, three different kinds of surface morphologies (a nanophase-separated morphology, a PMMA cellular or network-like morphology whose meshes filled with PS, a sea-island like morphology) were observed and their formation mechanisms are discussed, respectively. Upon annealing, two different morphology-evolution processes were observed. It is found that a upper PS-rich phase layer is formed when M-w,M-PS < 4 k, and this behavior is mainly attributed to the low interfacial tension between PS and PMMA component. When M-w,M-PS > 4 k, the PS-rich phase forms droplets on top of the PMMA-rich phase layer which wets the SiOx substrate. These results indicate that the surface morphology of the polymer blend films can be controlled by the polymer molecular weight and annealing conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of the chain structure and the intramolecular interaction energy of an A/B copolymer on the miscibility of the binary blends of the copolymer and homopolymer C have been studied by means of a Monte Carlo simulation. In the system, the interactions between segments A, B and C are more repulsive than those between themselves. In order to study the effect of the chain structure of the A/B copolymer on the miscibility, the alternating, random and block copolymers were introduced in the simulations, respectively. The simulation results show that the miscibility of the binary blends strongly depends on the intramolecular interaction energy ((ε) over bar (AB)) between segments A and B within the A/B copolymers. The higher the repulsive interaction energy, the more miscible the A/B copolymer and homopolymer C are. For the diblock copolymer/homopolymer blends, they tend to form micro phase domains. However, the phase domains become so small that the blend can be considered as a homogeneous phase for the alternating copolymer/ homopolymer blends. Furthermore, the investigation of the average end-to-end distance ((h) over bar) in different systems indicates that the copolymer chains tend to coil with the decrease Of (ε) over bar (AB) whereas the (h) over bar of the homopolymer chains depends on the chain structure of the copolymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by a Monte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it was attractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphology and structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introduced into the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymer blends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the block copolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends. Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell structure was observed in the segment B composition region from 20% to 60%. However, if diblock copolymer composition in the blends is less than 40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%. Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increase continuously and their distribution became wider with decreasing B-segment component.