142 resultados para outer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We produced silver tubes with an outer diameter of 1 mu m, wall thickness of 200 nm, and length of hundreds of micrometers by hydrothermal treatment of aqueous solutions of AgNO3 and hyperbranched polyglycidol (HPG) at 165 degrees C. The surfaces of the silver tubes were chemically modified by HPG, which was confirmed by FTIR of the silver tubes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The size controllable Gd2O3:Eu3+ luminescence nanotubes were successfully prepared using a simple method by coating gadolinium compounds on the carbon nanotubes and then firing the carbon nanotubes. The morphology of the obtained Gd2O3:Eu3+ nanotubes was determined by transmission electron microscopy (TEM). It was found that the obtained nanotubes have the outer diameters of similar to 100 nm, the inner diameters of similar to 50 nm, and the lengths of several tens of microns. The sizes of Gd2O3:Eu3+ nanotubes can be easily controlled by changing the reaction times and the concentration of reactants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipopolysaccharide ( LPS) is a major component of the outer membrane of all gram-negative bacteria. It is a heat-resistant toxin which can cause toxic shock in animals. LPS interacts with some biomolecules and triggers its toxic reaction. In this study, the interaction between LPS from Salmonella Minnesota and some biomolecules using syrface okasnib resibabce ( SPR) biosensor. biomolecules were imobilized on CM5 sensor-chip suing amion coupling method and LPS was injected over the immobilized surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel bump-surface multicompartment micelles formed by a linear amphiphilic ABC triblock copolymer via self-assembly in selective solvent were successfully observed both in simulation and experiment. The results revealed that the block A forms the most inner core, and the blocks B and C form the inner and outer layers, respectively, and the bumps were formed by block A and more likely to be born on curving surfaces. Moreover, the micelle shape could be controlled by changing the solvent selectivity of the blocks A and B. Spherical, cylindrical, and discoidal micelles with bumpy surfaces were obtained both in experiment and simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic functionalization of the ordered mesoporous SBA-15 (SiO2) aggregate blocks and rice grain-like particles were realized by using a sol-gel method, resulting in the formation of FexOy@SBA-15 composite materials. The X-ray diffraction (XRD), N-2 adsorption/desorption, and transmission electron microscopy (TEM) results show that these composites conserved ordered mesoporous structure after the formation of FexOy nanoparticles in the pores and on the outer surface of SBA-15. It was confirmed by the XRD and X-ray photoelectron spectroscopy (XPS) analysis that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites possess superparamagnetic properties at 300 K. The saturation magnetization of these composites increased with the increasing loading amount of gamma-Fe2O3. These composites, which possess high surface area and high pore volume, show magnetic response sufficient for drug targeting in the presence of an external magnetic field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduced a new nanoreactor system consisting of nanochannel-filled Fe3O4 core and SiO2 shell. Different morphologies of Fe3O4@SiO2 Core-shell nanostructures could be obtained through simple HCI etching of the magnetic cores. The outer silica shells were permeable and the Fe3O4 cores were accessible to the reactants. Therefore, the present nanoreactor system was applied to catalyze the reduction of H2O2, and it showed outstanding catalytic activity compared with bare Fe3O4 or Fe3O4@SiO2 core-shell nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of dopamine (DA) molecules on gold and their interactions with Fe3+ were studied by a microcantilever in a flow cell. The microcantilever bent toward the Au side with the adsorption of DA due to the change Of Surface stress induced by the intermolecular hydrogen bonds of DA or the charge transfer effect between adsorbates and the Substrate. The interaction process between DA adsorbates and Fe3+ was revealed by the deflection curves of microcantilever. As indicated by the appearance of a variation during the decline of curves, two steps were observed in the curve at relative high concentrations of Fe3+. In this case, Fe3+ reacted with DA molecules only in the outer layers and the complexes removed with solution. Then Fe3+ reacted further with DA molecules forming the surface complex in the first layer next to the gold. At this stage, the stability Of Surface complexes was time dependent, i.e., unstable initially and stable finally. This may be due to the surface complexes change from mono-dentate to bi-dentate complexes. In another case, i.e., at relative low concentration of Fe3+, only the first step was observed as indicated by the absence of a variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coupling of drugs to macromolecular carriers received an important impetus from Ringsdorf's notion of polymer-drug conjugates. Several water-soluble polymers, poly(ethylene glycol), poly[N-(2-hydroxypropyl) methacrylamidel, poly(L-glutamic acid) and dextran, are studied intensively and have been utilized successfully in clinical research. The promising results arising from clinical trials with polymer-drug conjugates (e.g., paclitaxel, doxorubicin, camptothecins) have provided a firm foundation for other synthetic polymers, especially biodegradable polymers, used as drug delivery vehicles. This review discusses biodegradable polymeric micelles as an alternative drug-conjugate system. Particular focus is on A-B or B-A-B type biodegradable amphiphilic block copolymer such as polylactide, morpholine-2,5-dione derivatives and cyclic carbonates, which can form a core-shell micellar structure, with the hydrophobic drug-binding segment forming the hydrophobic core and the hydrophilic segment as a hydrated outer shell. Polymeric micelles can be designed to avoid uptake by cells of reticuloendothelial system and thus enhance their blood lifetime via the enhanced permeability and retention effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solvent fractionation and differential scanning calorimetry (DSC) results show that high impact polypropylene (hiPP) produced by a multistage polymerization process consists of PP homopolymer, amorphous ethylene-propylene random copolymer (EPR), and semicrystalline ethylene-propylene copolymer. For the original hiPP particles obtained right after polymerization, direct transmission electron microscopy (TEM) observation reveals a fairly homogeneous morphology of the ethylene-propylene copolymer (EP) phase regions inside, while the polyethylene-rich interfacial layer observed between the EP region and the iPP matrix supports that EP copolymers form on the subglobule surface of the original iPP particles. Compared with that in original hiPP particles, the dispersed EP domains in pellets have much smaller average size and relatively uniform size distribution, indicating homogenization of the EP domains in the hiPP by melt-compounding. Upon heat-treatment, phase reorganization occurs in hiPP, and the dispersed EP domains can form a multiple-layered core-shell structure, comprising a polyethylene-rich core, an EPR intermediate layer and an outer shell formed by EP block copolymer, which accounts to some extent for the good toughness-rigidity balance of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)(3)(2+) encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)(3)(2+) to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)(3)(2+) was grown through the Stober method. Highly luminescent Ru(bpy)(3)(2+) serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)(3)(2+) is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)(3)(2+) co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of diblock copolymer mixtures (A-b-B/A-b-C or A-b-B/B-b-C mixtures) subjected to cylindrical confinement (two-dimensional confinement) was investigated using a Monte Carlo method. In this study, the boundary surfaces were configured to attract blocks A but repel blocks B and C. Relative to the structures of the individual components, the self-assembled structures of mixtures of the diblock copolymers were more complex and interesting. Under cylindrical confinement, with varying cylinder diameters and interaction energies between the boundary surfaces and the blocks, we observed a variety of interesting morphologies. Upon decreasing the cylinder's diameter, the self-assembled structures of the A(15)B(15)/A(15)C(15) mixtures changed from double-helix/cylinder structures (blocks B and C formed double helices, whereas blocks A formed the outer barrel and inner core) to stacked disk/cylinder structures (blocks B and C formed the stacked disk core, blocks A formed the outer cylindrical barrel), whereas the self-assembled structures of the A(15)B(7)/B7C15 mixtures changed from concentric cylindrical barrel structures to screw/cylinder structures (blocks C formed an inside core winding with helical stripes, whereas blocks A and B formed the outer cylindrical barrels) and then finally to the stacked disk/cylinder structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanowires of SiC were synthesized by carbothermally reducing PVP/TEOS composite fibres obtained by electrospinning. High-resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED) indicated that the SiC nanowires are single crystalline in nature. Both Fourier-transformed infrared spectroscopy and HRTEM indicated that a thin layer of SiO2 was formed on the outer surface of the nanowire as a result of post-heat treatment for the removal of residual carbon. Such SiO2 layer protects the inner SiC fibre from further oxidation. The formation mechanism of single-crystalline SiC nanowires was proposed based on our understanding and characterizations. The growth of the nanowire is believed to be along the ( 111) of its cubic cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method of reversibly moving US nanoparticles in the perpendicular direction was developed on the basis of the phase separation of block copolymer brushes. Polystyrene-b-(poly(methyl methaerylate)-co-poly(cadmium dimethacrylate)) (PS-b-(PMMA-co-PCdMA)) brushes were grafted from the silicon wafer by surface-initiated atom transfer radical polymerization (ATRP). By exposing the polymer brushes to H2S gas, PS-b-(PMNlA-co-PCdNlA) brushes were converted to polystyrene-b-(poly(methyl methacrylate) -co-poly(methacrylic acid)(CdS)) (PS-b-(PMMA-co-PMAA(CdS))) brushes, in which US nanoparticles were chemically bonded by the carboxylic groups of PMAA segment. Alternating treatment of the PS-b-(PMMA-co-PMAA(CdS)) brushes by selective solvents for the outer block (a mixed solvent of acetone and ethanol) and the inner PS block (toluene) induced perpendicular phase separation of polymer brushes, which resulted in the reversible lifting and lowering of US nanoparticles in the perpendicular direction. The extent of movement can be adjusted by the relative thickness of two blocks of the polymer brushes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodegradable, amphiphilic, four-armed poly(epsilon-caprolactone)-block-poly(ethylene oxide) (PCL-b-PEO) copolymers were synthesized by ring-opening polymerization of ethylene oxide in the presence of four-armed poly(epsilon-caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL-b-PEO copolymer was confirmed by H-1 NMR and C-13 NMR. The hydroxyl end groups of the four-armed PC L were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four-armed architecture of the copolymer. Physicochemical properties of the four-armed block copolymers differed from their starting four-armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four-armed block copolymer increased with PEO length and PEO content.