86 resultados para objectivity without objects
Resumo:
One of the great puzzles in the psychology of visual perception is that the visual world appears to be a coherent whole despite our viewing it through temporally discontinuous series of eye fixations. The investigators attempted to explain this puzzle from the perspective of sequential visual information integration. In recent years, investigators hypothesized that information maintained in the visual short-term memory (VSTM) could become visual mental images gradually during time delay in visual buffer and integrated with information perceived currently. Some elementary studies had been carried out to investigate the integration between VSTM and visual percepts, but further research is required to account for several questions on the spatial-temporal characteristics, information representation and mechanism of integrating sequential visual information. Based on the theory of similarity between visual mental image and visual perception, this research (including three studies) employed the temporal integration paradigm and empty cell localization task to further explore the spatial-temporal characteristics, information representation and mechanism of integrating sequential visual information (sequential arrays). The purpose of study 1 was to further explore the temporal characteristics of sequential visual information integration by examining the effects of encoding time of sequential stimuli on the integration of sequential visual information. The purpose of study 2 was to further explore the spatial characteristics of sequential visual information integration by investigating the effects of spatial characteristics change on the integration of sequential visual information. The purpose of study 3 was to explore the information representation of information maintained in the VSTM and integration mechanism in the process of integrating sequential visual information by employing the behavioral experiments and eye tracking technology. The results indicated that: (1) Sequential arrays could be integrated without strategic instruction. Increasing the duration of the first array could cause improvement in performance and increasing the duration of the second array could not improve the performance. Temporal correlation model was not fit to explain the sequential array integration under long-ISI conditions. (2) Stimuli complexity influenced not only the overall performance of sequential arrays but also the values of ISI at asymptotic level of performance. Sequential arrays still could be integrated when the spatial characteristics of sequential arrays changed. During ISI, constructing and manipulating of visual mental image of array 1 were two separate processing phases. (3) During integrating sequential arrays, people represented the pattern constituted by the objects' image maintained in the VSTM and the topological characteristics of the objects' image had some impact on fixation location. The image-perception integration hypothesis was supported when the number of dots in array 1 was less than empty cells, and the convert-and-compare hypothesis was supported when the number of the dot in array 1 was equal to or more than empty cells. These findings not only contribute to make people understand the process of sequential visual information integration better, but also have significant practical application in the design of visual interface.
Resumo:
Human being built and updated the representations of spatial distances and spatial relations between protagonist and the around things in language comprehension. The representations of the spatial relations in egocentric spatial situational models were important in spatial cognition, narrative comprehension and psycholinguistic. Using imagery searching paradigm, Franklin and Tversky (1990) studied the representations of the spatial relations in egocentric spatial situational models and found the standard RT pattern of searching the objects in different directions around the observer (front
Resumo:
Under investigation by emission electron microscopy, the shape and size of three-dimensional objects are distorted because of the appearance of a characteristic potential relief and a possible contact potential difference between the particles and the substrate. An estimation of these effects for spherical particles is made. It is shown that the apparent size of particles observed in an emission electron microscope (EEM) could be increased as well as decreased depending on the relation between the work functions of the particle and the substrate. The corresponding formulae are given and several possibilities are shown which permit us to determine from the EEM image the real size of particles and their work function relative to the substrate.
Resumo:
To elucidate the physicochemical properties of silk protein, we studied the effects of calcium chloride and ethanol on the gelation of fibroin. Fibroin was treated with 5.0 M calcium chloride in water (Ca/W) or 5.0 M calcium chloride in 20% (v/v) ethanol (Ca/Et) and the rheological properties of colloidal fibroin were investigated. The Ca/W-treatment promoted an increased rate of gelation and gave higher gel strength than the Ca/Et-treatment. The maximum gel strengths of Ca/W- and Ca/Et-treated fibroins were obtained at pH 7.0 and pH 5.5, respectively. Scanning electron micrographs showed that the Ca/W-treated fibroin gel had a more developed three-dimensional molecular network than the Ca/Et-treated gel. Further, FT-IR spectra suggested that Ca/W-treated fibroin has more of a beta-structure than Ca/Et-treated one in colloidal conditions. This study indicated that the use of calcium chloride alone was more beneficial to the gelation of fibroin than combined use with ethanol.