154 resultados para numerical simulations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents exact density, velocity and temperature solutions for two problems of collisionless gas flows around a flat plate or a spherical object. At any point off the object, the local velocity distribution function consists of two pieces of Maxwellian distributions: one for the free stream which is characterized by free stream density, temperature and average velocity, n0, T0, U0; and the other is for the wall and it is characterized by density at wall and wall temperature, nw,Tw. Directly integrating the distribution functions leads to complex but exact flowfield solutions. To validate these solutions, we perform numerical simulations with the direct simulation Monte Carlo (DSMC) method. In general, the analytical and numerical results are virtually identical. The evaluation of these analytical solutions only requires less than one minute while the DSMC simulations require several days.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract: To study the effects of spudcan penetration on the adjacent foundations of offshore platforms, experiments and numerical simulations (using business software ABAQUS) are carried out. It is shown that the penetration of spudcan can cause the soil layer affected in an annular zone. The affected zone has a maximum width of one times the diameter of the spudcan. The deflection of the platform’s foundation increases with the penetration of spudcan. The smaller the density of soil layer is, the bigger the displacement of the foundation is. However, the maximum displacement at the top of the foun- dation changes little once the penetration depth is over a critical value. The bigger the diameter and the penetration depth of the spudcan are, the bigger the displacements of the foundation are.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is proposed that single attosecond pulses be generated via high-order harmonic generation by using a two-color pump pulse with time dependent ellipticity. The two-color pump pulse is created by the fundamental field and its second harmonic: the fundamental field is left-circularly polarized and the second harmonic is right-circularly polarized. Numerical simulations show that single attosecond pulses can be produced in the cut-off region by using the synthesis of 20 fs left-hand and right-hand circularly polarized pulses with a pulse delay of 20 fs. The attosecond pulses produced this way are much stronger than that produced by a few-cycle linear polarized pulse of comparable intensity. (c) 2005 Optical Society of America

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical simulations of fs laser propagation in water have been made to explain the small-scale filaments in water we have observed by a nonlinear fluorescence technique. Some analytical descriptions combined with numerical simulations show that a space-frequency coupling mainly from the interplay among self-phase modulation, dispersion and phase mismatching will reshape the laser beam into a conical wave which plays a major role of energy redistribution and can prevent laser beam from self-guiding over a long distance. An effective group velocity dispersion is introduced to explain the pulse broadening and compression in the filamentation. (c) 2005 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlinear propagation of fs laser pulses in liquids and the dynamic processes of filamentation such as self-focusing, intensity clamping, and evolution of white light production have been analyzed by using one- and two-photon fluorescence. The energy losses of laser pulses caused by multiphoton absorption and conical emission have been measured respectively by z-scan technique. Numerical simulations of fs laser propagation in water have been made to explain the evolution of white light production as well as the small-scale filaments in liquids we have observed by a nonlinear fluorescence technique. (c) 2005 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the characteristics of Gaussian beams reflected and transmitted from a uniaxial crystal slab with an arbitrary orientation of its optical axis. The formulas of the total electric and magnetic fields inside and outside the slab are derived by use of Maxwell's equations and by matching the boundary conditions at the interfaces. Numerical simulations are presented and the field values as well as the power densities are computed. Negative refractions are demonstrated when the beam is transmitted through a uniaxial crystal slab. Beam splitting of the reflected beam is observed and is explained by the resonant transmission for plane waves. Dependences of the lateral shift on the incident angle and beam width are discussed. Negative and positive lateral shifts are observed due to the spatial anisotropic properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the possibility of manipulating the focusing properties of a medium with electromagnetically induced transparency. In the focal region of focused ultraslow light pulses, the spectral anomalous behaviors can be actively modified by varying the control field intensity. Unlike the case in free space, we find in slow light focusing that the spectrum bandwidth of the incident field needed to produce observable spectral changes can be reduced by several orders. Numerical simulations with accessible parameters clearly show that spectral anomalies of focused mu s pulses are observable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on the spatial coherence of the source and the aperture in the imaging system are discussed and demonstrated by using numerical simulations. The results show that an incoherent source and a large aperture will lead to a good image quality and small noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the self-imaging and image-transforming properties of a probe field in a cold atomic medium with electromagnetically induced transparency (EIT). Due to the similarities between the gradient-index medium and the inhomogeneous index distribution of an EIT medium under the conditions of a negative probe detuning and a Gaussian control field, we find based on analytical investigations that there exists a kind of electromagnetically induced self-imaging phenomenon in cold atomic media. Numerical simulations clearly show that electromagnetically induced self-imaging is observable and controllable. (c) 2007 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The term "polarization-dependent Talbot effect" means that the Talbot self-imaging intensity of a high-density grating is different for TE and TM polarization modes. Numerical simulations with the finite-difference time-domain method show that the polarization dependence of the Talbot images is obvious for gratings with period d between 2 lambda and 3 lambda. Such a polarization-dependent difference for TE and TM polarization of, a high-density grating of 630 lines/mm (corresponding to d/lambda = 2.5) is verified through experiments with the scanning near-field optical microscopy technique, in which a He-Ne laser is used as its polarization is changed from the TE mode to the TM mode. The polarization-dependent Talbot effect should help us to understand more clearly the diffraction behavior of a high-density grating in nano-optics and contribute to wide application of the Talbot effect. (c) 2006 Optical Society of America.