103 resultados para mutual recognition
Resumo:
Combining a single-molecule study of protein binding with a coarse grained molecular dynamics model including solvent (water molecules) effects, we find that biomolecular recognition is determined by flexibilities in addition to structures. Our single-molecule study shows that binding of CBD (a fragment of Wiskott-Aldrich syndrome protein) to Cdc42 involves bound and loosely bound states, which can be quantitatively explained in our model as a result of binding with large conformational changes. Our model identified certain key residues for binding consistent with mutational experiments. Our study reveals the role of flexibility and a new scenario of dimeric binding between the monomers: first bind and then fold.
Resumo:
Biomolecular associations often accompanied by large conformational changes, sometimes folding and unfolding. By exploring an exactly solvable model, we constructed the free energy landscape and established a general framework for studying the biomolecular flexible binding process. We derived an optimal criterion for the specificity and function for flexible biomolecular binding where the binding and conformational folding are coupled.
Resumo:
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T-m = 50.2 +/- 0.2 degrees C and a folding enthalpy Delta H degrees(fold) = -49.0 +/- 2.1 kcal mol(-1). These values agree with values of T-m = 49.6 degrees C and Delta H degrees(fold) = -51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy Delta G degrees(bind) = -5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with Delta H degrees(bind) = -8.7 kcal mol(-1). Combination of enthalpy and free energy produce ail unfavorable entropy of -T Delta S degrees = +3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K-1 was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures.
Resumo:
We reported here four structures of lanthanide-amino acid complexes obtained under near physiological pH conditions and their individual formula can be described as [Tb-2(DL-Cys)(4)(H2O)(8)]Cl-2 (1), [Eu-4(mu(3)-OH)(4)(L-Asp)(2)(L-HAsp)(3)(H2O)(7)] Cl center dot 11.5H(2)O (2), [Eu-8-(L-HVal) (16)(H2O)(32)]Cl-24 center dot 12.5H(2)O (3), and [Tb-2(DL-HVal)(4)(H2O)(8)]Cl-6 center dot 2H(2)O (4). These complexes showed diverse structures and have shown potential application in DNA detection. We studied the interactions of the complexes with five single-stranded DNA and found different fluorescence enhancement, binding affinity and binding stoichiometry when the complexes are bound to DNA.
Resumo:
Pattern recognition methods were applied to the analysis of 600 MHz H-1 NMR spectra of urine from rats dosed with compounds that induced organ-specific damage in the liver and kidney. Male Wistar rats were separated into groups (n=4) and each was treated with one of following compounds: HgCl2, CCl4, Lu(NO3)(3) and Changle (a kind of rare earth complex mixed with La, Ce, Pr and Nd). Urine samples from the rats dosed with HgCl2, CCl4 and Lu(NO3)(3) were collected over a 24 h time course and the samples from the rats administrated with Changle were gained after 3 months. These samples were measured by 600 MHz NMR spectroscopy. Each spectrum was data-processed to provide 223 intensity-related descriptors of spectra. Urine spectral data corresponding to the time intervals, 0-8 h (HgCl2 and CCl4), 4-8 (Lu(NO3)(3)) h and 90 d (Changle) were analyzed using principal component analysis (PCA). Successful classification of the toxicity and biochemical effects of Lu(NO3)(3) was achieved.
Resumo:
Biomolecular recognition often involves large conformational changes, sometimes even local unfolding. The identification of kinetic pathways has become a central issue in understanding the nature of binding. A new approach is proposed here to study the dynamics of this binding-folding process through the establishment of a path-integral framework on the underlying energy landscape. The dominant kinetic paths of binding and folding can be determined and quantified. The significant coupling between the binding and folding of biomolecules often exists in many important cellular processes. In this case, the corresponding kinetic paths of binding are shown to be intimately correlated with those of folding and the dynamics becomes quite cooperative. This implies that binding and folding happen concurrently. When the coupling between binding and folding is weak (strong), the kinetic process usually starts with significant folding (binding) first, with the binding (folding) later proceeding to the end. The kinetic rate can be obtained through the contributions from the dominant paths. The rate is shown to have a bell-shaped dependence on temperature in the concentration-saturated regime consistent with experiment. The changes of the kinetics that occur upon changing the parameters of the underlying binding-folding energy landscape are studied.
Resumo:
The molecular spectroscopy (including near infrared diffuse reflection spectroscopy, Raman spectroscopy and infrared spectroscopy) with OPUS/Ident software was applied to clustering ginsengs according to species and processing methods. The results demonstrate that molecular spectroscopic analysis could provide a rapid, nondestructive and reliable method for identification of Chinese traditional medicine. It's found that the result of Raman spectroscopic analysis was the best one among these three methods. Comparing with traditional methods, which are laborious and time consuming, the molecular spectroscopic analysis is more effective.
Resumo:
The study of associations between two biomolecules is the key to understanding molecular function and recognition. Molecular function is often thought to be determined by underlying structures. Here, combining a single-molecule study of protein binding with an energy-landscape-inspired microscopic model, we found strong evidence that biomolecular recognition is determined by flexibilities in addition to structures. Our model is based on coarse-grained molecular dynamics on the residue level with the energy function biased toward the native binding structure ( the Go model). With our model, the underlying free-energy landscape of the binding can be explored. There are two distinct conformational states at the free-energy minimum, one with partial folding of CBD itself and significant interface binding of CBD to Cdc42, and the other with native folding of CBD itself and native interface binding of CBD to Cdc42. This shows that the binding process proceeds with a significant interface binding of CBD with Cdc42 first, without a complete folding of CBD itself, and that binding and folding are then coupled to reach the native binding state.
Resumo:
In this paper, a calix[4]arene derivative, 5,11,17,23-butyl-25,26,27,28-tetra-(ethanoxycarbonyl)-methoxy-calix[4]arene (L), is investigated as a host to recognize alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) at the interface between two immiscible electrolyte solutions (ITIES). Well-defined cyclic voltammograms are obtained at the micro- and nano-water \ 1,2-dichloroethane (W \ DCE) interfaces supported at micro- and nano-pipets.
Resumo:
Aggregation behavior of two amphiphilic D-pi -A molecules bearing barbituric acid as both recogniton group and electron-drawing substituent, 5-(4-dodecyl oxybenzylidene)-(1H, 3H)-2,4,6-pyrimidine trione (PB12) and 5-(4-N,N-didodecyl aminobenzylidene)-(1H,3H)-2,4,6-pyrimidine trione (AB(12)) was studied by UV-visible, fluorescence, and surface voltaic spectroscopies (SPS). The experimental results indicate that PB12 tends to form J-aggregate and AB(12) tends to form H-aggregate under increasing concentration. An intramolecular twisted charge transfer (TICT) emission around 500 nm is observed when J-aggregate is formed between PB12 molecules, and an excimer emission around 600 nm is observed when H-aggregate is formed between AB(12) molecules.
Resumo:
The dependence of the differential capacitance of polypyrrole doped with several typical dopants on potential is presented, which shows that the differential capacitance varies with the potential, the doped polypyrroles with electroactive ions give the largest capacitance near their formal potentials, which is attributed to the mutual media for electron transfer between polypyrrole and electroactive dopants. The existence of two conducting phases was observed in the complex capacitance plots. The electroactive anions act as an intra-conducting-phase medium for electron transfer, the electroactive cations act as an inter-conducting-phase medium for electron transfer. The mutual media between polypyrrole and redox dopants lead to the increase of the discharging time.
Resumo:
An equation has been derived for the equilibrium swelling of sequential interpenetrating polymer networks (IPNs), which exhibit a single glass transition temperature and the two components are considered to be compatible. The properties of the equilibrium swelling and elastic modulus of sequential poly(vinyl acetate)/poly(methyl acrylate) IPNs have been discussed according to the derived equation and the Siegfried-Thomas-Sperling formula of the elastic modulus for homo IPNs. In both fully swollen and bulk states, there was favourable evidence for added physical crosslinks in poly(vinyl acetate)/poly(methyl acrylate) IPNs. The Binder-Frisch theory is also discussed.
Resumo:
The relationship between structures of complex fluorides and spectral structure of Eu(II) ion in complex fluorides (AB(m)F(n)) is investigated by means of pattern recognition methods, such as KNN, ALKNN, BAYES, LLM, SIMCA and PCA. A learning set consisting of 32 f-f transition emission host compounds and 31 d-f transition emission host compounds and a test set consisting of 27 host compounds were characterized by 12 crystal structural parameters. These parameters, i.e. features, were reduced from 12 to 6 by multiple criteria for the classification of these host compounds as f-f transition emission or d-f transition emission. A recognition rate from 79.4 to 96.8% and prediction capabilities from 85.2 to 92.6% were obtained. According to the above results, the spectral structures of Eu(II) ion in seven unknown host lattices were predicted.