138 resultados para modern dynamics simulation
Resumo:
采用分子动力学方法(Molecular dynamics,MD)对托普霉素(Tobramycin)与16S rRNA的A位点复合物的特异性识别机制进行了理论模拟研究,模拟时间为3.6 ns. 结果表明,A位点中波动最大的部位是两个环外碱基A1492和A1493;tobramycin的环Ⅰ和环Ⅱ是其最保守的结构单元,可能参与了Tobramycin与16S rRNA的A位点之间的特异性识别. 另外,发现一个残存时间为3.6 ns的"结构化"水分子,它桥接了Tobramycin环Ⅱ的N3与环Ⅰ的N6′之间的氢键,稳定了Tobramycin的结构;Tobramycin周围水合密度较高的位点出现在环Ⅰ和环Ⅱ附近,这也正是晶体结构中形成较多水媒介氢键及动力学模拟中结构化水分子出现的位置. 动力学模拟证实Tobramycin与16S rRNA间的结合是大量氢键及水分子相互作用的结果,这有助于设计和开发以Tobramycin为基础,具有高亲和力及特异性的16S rRNA抑制剂.
Resumo:
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.
Resumo:
用分子动力学模拟方法研究甲烷水合物热激法分解,系统地研究注入340 K液态水的结构Ⅰ型甲烷水合物的分解机理.模拟显示水合物表层水分子与高温液态水分子接触获得热能,分子运动激烈,摆脱水分子间的氢键束缚,笼状结构被破坏.甲烷分子获得热能从笼中挣脱,向外体系扩散.热能通过分子碰撞从外层传递给内层水分子,水合物逐层分解.对比注入277K液态水体系模拟结果,得出热激法促进水合物分解.
Thermal stimulation on dissociation of methane hydrate was investigated with molecular dynamics simulation. The dissociation mechanism of methane hydrate with structure Ⅰ was investigated systematically by injecting heated, liquid water of 340 K. The results showed that when the water molecules on hydrate surface are made in contact with high temperature liquid water, they obtain heat energy, and with the obtained energy the water molecules move intensively, breaking the hydrogen bond between water molecules, and destroy the clathrate structure. In addition, methane molecules that have obtained heat energy, break away from the clathrate and diffuse into liquid. Due to heat energy being transferred into inside layer from outside layer through collision between molecules, the hydrate is dissociated layer by layer. Comparing the effects of liquid water with different temperatures of 340 and 277 K on hydrate dissociation, it is concluded that the thermal stimulation promotes dissociation of the hydrate.
Resumo:
用分子动力学(MD)模拟方法系统研究了结构Ⅰ型(SⅠ)和结构H型(SH)氢气水合物中氢气的占据情况并确定了氢气水合物的稳定结构:SⅠ水合物氢气分子数小胞中为2,大胞中为3;SH水合物氢气分子数小胞中为2,中胞中为2,大胞中为11.分析了稳定情况下水合物各胞腔内氢气分子之间的径向分布函数(RDF),得出了氢气分子在各胞腔内的稳定位置.由稳定位置得到了稳定结构下氢气水合物的储氢质量分数:SⅠ为5.085%,SH为6.467%.与实验对比得出结论:SH水合物稳定结构下的储氢能力最强.
Resumo:
The boundary condition at the solid surface is one of the important problems for the microfluidics. In this paper we study the effects of the channel sizes on the boundary conditions (BC), using the hybrid computation scheme adjoining the molecular dynamics (MD) simulations and the continuum fluid mechanics. We could reproduce the three types of boundary conditions (slip, no-slip and locking) over the multiscale channel sizes. The slip lengths are found to be mainly dependent on the interfacial parameters with the fixed apparent shear rate. The channel size has little effects on the slip lengths if the size is above a critical value within a couple of tens of molecular diameters. We explore the liquid particle distributions nearest the solid walls and found that the slip boundary condition always corresponds to the uniform liquid particle distributions parallel to the solid walls, while the no-slip or locking boundary conditions correspond to the ordered liquid structures close to the solid walls. The slip, no-slip and locking interfacial parameters yield the positive, zero and negative slip lengths respectively. The three types of boundary conditions existing in "microscale" still occur in "macroscale". However, the slip lengths weakly dependent on the channel sizes yield the real shear rates and the slip velocity relative to the solid wall traveling speed approaching those with the no-slip boundary condition when the channel size is larger than thousands of liquid molecular diameters for all of the three types of interfacial parameters, leading to the quasi-no-slip boundary conditions.
Resumo:
树枝形高分子具有几乎完美的分子结构,含有许多末端基团,并拥有特殊的流变行为使其在生物医药、基因治疗、光电材料等领域有广泛的应用前景。探讨树枝形高分子的代数和链节长度对其静态性质和动力学行为的影响规律,将有助于实现树枝形高分子的结构调控,为其广泛应用提供依据和指导。然而,目前系统研究代数和链节长度的研究仍然较少,还遗留很多问题没有得到解决,尤其是树枝形高分子的动力学行为。因此,本论文使用分子动力学的模拟方法探讨了树枝形高分子的静态性质和动力学行为,获得了如下结果: 1. 树枝形高分子的回转半径Rg满足标度律Rg~N1/5(G+1)2/5P2/5(其中树枝形分子的聚合度是N,代数是G,链节长度是P,子代代数是g。)。 2. 随着代数的增加,树枝形高分子的分形维数增加并接近3.0,静态结构因子和硬球的相似,表明其内部结构发生了由类星形向近球形转化。 3. 随着代数和链节长度的增加,出现了“单元”(monomer)密度几乎不变的区域,这是外层子代链节回折的结果。定量计算表明:树枝形分子的回折能力随着链节长度的增加而增强,随着代数的增加而减弱。 4. 树枝形高分子整体的扩散行为和“单元”的运动满足Zimm标度关系。 5. 树枝形分子各子代的运动速度不同,与内层子代相比,外层子代在短时间内扩散较慢,但其松弛较快。借助Stoke-Einstein扩散方程和链节的空间位阻效应,我们解释了子代速度不同的成因。
Resumo:
Chain topology strongly affects the static and dynamic properties of polymer melts and polymers in dilute solution. For different chain architectures, such as ring and linear polymers, the molecular size and the diffusion behavior are different. To further understand the chain topology effect on the static and dynamic properties of polymers, we focus on the tadpole polymer which consists of a cyclic chain attached with one or more linear tails. It is found that both the number and the length of linear tails play important roles on the properties of the tadpole polymers in dilute solution. For the tadpole polymers with fixed linear tail length and number, with increasing the degree of polymerization of tadpole polymers, a transition from linear-like to ring-like behavior is observed for both the static and dynamic properties.
Resumo:
A new cyclic guanidinium ionic liquid OGI (1,3-dimethyl-2-N ''-methyl-N ''-octylimidazoguanidinium iodide) has been used as a quasi-solid-state electrolyte for dye-sensitized solar cells (DSCs), and 6.38% conversion efficiency was achieved at AM 1.5 simulated sunlight (9.81 mW cm(-2)). Further gelation with SiO2 nanoparticles afforded the solid-state electrolyte, which presented overall conversion efficiency of 5.85%. The diffusion properties of these OGI-based electrolytes were investigated. In the meantime, the optimal structure and ion-pairing interaction in OGI have been proposed by density functional theoretical calculation (DFT) at the B3LYP/6-21G(d,p) level.
Resumo:
The influence of molecular topology on the structural and dynamic properties of polymer chain in solution with ring structure, three-arm branched structure, and linear structure are studied by molecular dynamics simulation. At the same degree of polymerization (N), the ring-shaped chain possesses the smallest size and largest diffusion coefficient. With increasing N, the difference of the radii of gyration between the three types of polymer chains increases, whereas the difference of the diffusion coefficients among them decreases. However, the influence of the molecular topology on the static and the dynamic scaling exponents is small. The static scaling exponents decrease slightly, and the dynamic scaling exponents increase slightly, when the topology of the polymer chain is changed from linear to ring-shaped or three-arm branched architecture. The dynamics of these three types of polymer chain in solution is Zimm-like according to the dynamic scaling exponents and the dynamic structure factors.
Resumo:
The interaction of daunomycin with sodium dodecyl sulfate and Triton X-100 micelles was investigated as a model for the hydrophobic contribution to the free energy of DNA intercalation reactions. Measurements of visible absorbance, fluorescence lifetime, steady-state fluorescence emission intensity, and fluorescence anisotropy indicate that the anthraquinone ring partitions into the hydrophobic micelle interior. Fluorescence quenching experiments using both steady-state and lifetime measurements demonstrate reduced accessibility of daunomycin in sodium dodecyl sulfate micelles to the anionic quencher iodide and to the neutral quencher acrylamide. Quenching of daunomycin fluorescence by iodide in Triton X-100 micelles was similar to that seen with free daunomycin. Studies of the energetics of the interaction of daunomycin with micelles by fluorescence and absorbance titration methods and by isothermal titration calorimetry in the presence of excess micelles revealed that association with sodium dodecyl sulfate and Triton X-100 micelles is driven by a large negative enthalpy. Association of the drug with both types of micelles also has a favorable entropic contribution, which is larger in magnitude for Triton X-100 micelles than for sodium dodecyl sulfate micelles.
Resumo:
研究了借助计算流体力学软件CFX与USAERO对水下机器人的操纵性进行仿真计算的方法,并将仿真计算结果与模型试验结果对比,验证仿真计算的可行性,指出仿真计算的适用范围.该方法可以对某些现实中难以进行的操纵性试验进行仿真计算,对于研究水下机器人的操纵性尤其是在方案设计阶段的操纵性设计和降低试验成本有一定的现实意义.
Dynamics of collapsing fluidized beds and its application in the simulation of pulsed fluidized beds
Resumo:
A new method to study collapsing process of fluidized bed was proposed. The method is based on the analysis of the pressure variation during collapse. A model is proposed to describe the pressure variation on any location of the bed during collapse. Three kind of particles were fluidized by air and the pressure variation after shutting down the gas supply was measured by pressure transducers and simulated by the proposed model. The simulated results were in good agreement with the experimental data. The parameters of the fluidized bed, such as bubble fraction alpha(b), particle fraction in dense phase alpha(p), bubble velocity u(b) and slip velocity of particle u(i), can be estimated from the measured pressure data by using the proposed model. The model was also used to calculate the pressure variation in pulsed fluidized beds with low frequency.
Resumo:
Coarse Particle sedimentation is studied by using an algorithm with no adjustable parameters based on stokesian dynamics. Only inter-particle interactions of hydrodynamic force and gravity are considered. The sedimentation of a simple cubic array of spheres is used to verify the computational results. The scaling and parallelism with OpenMP of the method are presented. Random suspension sedimentation is investigated with Mont Carlo simulation. The computational results are shown in good agreement with experimental fitting at the lower computational cost of O(N In N).
Resumo:
This book elucidates the methods of molecular gas dynamics or rarefied gas dynamics which treat the problems of gas flows when the discrete molecular effects of the gas prevail under the circumstances of low density, the emphases being stressed on the basis of the methods, the direct simulation Monte Carlo method applied to the simulation of non-equilibrium effects and the frontier subjects related to low speed microscale rarefied gas flows. It provides a solid basis for the study of molecular gas dynamics for senior students and graduates in the aerospace and mechanical engineering departments of universities and colleges. It gives a general acquaintance of modern developments of rarefied gas dynamics in various regimes and leads to the frontier topics of non-equilibrium rarefied gas dynamics and low speed microscale gas dynamics. It will be also of benefit to the scientific and technical researchers engaged in aerospace high altitude aerodynamic force and heating design and in the research on gas flow in MEMS
[1] Molecular structure and energy states | (21) | ||
[2] Some basic concepts of kinetic theory | (51) | ||
[3] Interaction of molecules with solid surface | (131) | ||
[4] Free molecular flow | (159) | ||
[5] Continuum models | (191) | ||
[6] Transitional regime | (231) | ||
[7] Direct simulation Monte-Carlo (DSMC) method | (275) | ||
[8] Microscale slow gas flows, information preservation method | (317) | ||
[App. I] Gas properties | (367) | ||
[App. II] Some integrals | (369) | ||
[App. III] Sampling from a prescribed distribution | (375) | ||
[App. IV] Program of the couette flow | (383) | ||
Subject Index | (399) |