277 resultados para meal size
Resumo:
The present study aimed at determining the detection capabilities of an acoustic observation system to recognize porpoises under local riverine conditions and compare the results with sighting observations. Arrays of three to five acoustic data loggers were stationed across the main channel of the Tian-e-zhou Oxbow of China's Yangtze River at intervals of 100-150 m to record sonar. signals of free-ranging finless porpoises (Neophocaena phocaenoides). Acoustic observations, concurrent with visual observations, were conducted at two occasions on 20-22 October 2003 and 17-19 October 2004. During a total of 42 h of observation, 316 finless porpoises were sighted and 7041 sonar signals were recorded by loggers. The acoustic data loggers recorded ultrasonic signals of porpoises clearly, and detected the presence of porpoises with a correct detection level of 77.6% and a false alarm level of 5.8% within an effective distance of 150 m. Results indicated that the stationed passive acoustic observation method was effective in detecting the presence of porpoises and showed potential in estimating the group size. A positive linear correlation between the number of recorded signals and the group size of sighted porpoises was indicated, although it is faced with some uncertainty and requires further investigation. (C) 2005 Acoustical Society of America.
Resumo:
Triplicate groups of gibel carp Carassius auratus gibelio (initial body weight: 5.25 +/- 0.02 g) were fed for 8 weeks at 20-25 degreesC on five isonitrogenous (crude protein: 400 g kg(-1)) and isoenergetic diets (gross energy: 17 kJ g(-1)). Meat and bone meal (MBM) or poultry by-product meal (PBM) were used to replace fish meal at different levels of protein. The control diet contained fish meal as the sole protein source. In the other four diets, 150 or 500 g kg(-1) of fish meal protein was substituted by MBM (MBM15, MBM50) or PBM (PBM15, PBM50). The results showed that feeding rate for the MBM50 group was significantly higher than for other groups except the PBM50 group (P < 0.05). Growth rate in the MBM15 group was significantly higher than that in the control (P < 0.05), while there was no significant difference in growth between the control and other groups (P > 0.05). Feed efficiency and protein efficiency ratio in MBM50 was significantly lower while that in MBM15 was significantly higher (P < 0.05). Replacement of fish meal by MBM at 500 g kg(-1) protein significantly decreased apparent dry matter digestibility (ADC(D)) and gross energy (ADC(E)) while apparent protein digestibility (ADC(P)) was significantly decreased by the replacement of MBM or PBM (P < 0.05). The results suggest that MBM and PBM could replace up to 500 g kg(-1) of fish meal protein in diets for gibel carp without negative effects on growth while 150 g kg(-1) replacement by MBM protein improved feed utilization.
Resumo:
The potential use of poultry by-product meal (PBM) and meat and bone meal (MBM) as alternative dietary protein sources for juvenile Macrobrachium nipponense was studied by a 70-day growth trial. Triplicate groups of M. nipponense (initial body weight: 0.37 g) were fed at 20.7-22.4 degreesC on each of the five isoenergetic and isonitrogenous diets (protein content about 38%) with different replacement of fish meal by MBM or PBM. The control diet used white fish meal as the sole protein source, the other four diets were prepared with 15% or 50% fish meal protein substituted by either MBM (MBM15, MBM50) or PBM (PBM15, PBM50). The results showed that replacement of fish meal by MBM in diets did not affect growth performance of M. nipponense (P > 0.05), while specific growth rate in PBM15 was significantly higher than that in other groups (P < 0.05). Survival rates of shrimp fed with MBM15 diet were significantly higher than that in other groups (P < 0.05). No significant differences in immunological parameters, including total haemocyte count (THC), phenoloxidase activity (PO) and respiratory burst (O-2(-)), were observed between the shrimps that were fed five experimental diets, and all determined immunological parameters in control groups were slightly higher than those in replacement groups. In conclusion, either MBM or PBM investigated could replace up to 50% fish meal protein in diets for M. nipponense. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The objectives of the study were to investigate the effect of a feeding stimulant on feeding adaptation of gibel carp (Carassius auratus gibelio Bloch) fed diets with replacement of fish meal by meat and bone meal (MBM), and whether or not the juvenile gibel carp could adapt to higher MBM level in the diet. Juvenile and adult gibel carp were tested. Two and one replacement levels were used for juvenile and adult fish respectively. Each group of diets was set as two types with or without a unique rare earth oxide: Y2O3, Yb2O3, La2O3, Sm2O3, Nd2O3 or Gd2O3 (only the first four rare earth oxides were used in adult diets) for four adaptation periods of 3, 7, 14 and 28 days respectively. After mixing, an equal mixture of all six diets for juvenile or four diets for adult was offered in excess for 2 days. During the last 2 days of each experiment, no feed was offered and faeces from each tank were collected. Feeding preference was expressed as relative feed intake of each diet, which was estimated based on the relative concentration of each marker in the faeces. Given some adaptation period, such as 3-28 days, the effects of MBM and squid extract inclusion on the preference to each diet were reduced. After 28 days adaptation, the preferences between groups were not significantly different.
Resumo:
Algal size can affect the rate of metabolism and of growth. Different sized colonies of Nostoc sphaeroides were used with the aim of determining the effects of colony size on photosynthetic physiology and growth. Small colonies showed higher maximum photosynthetic rates per unit chlorophyll, higher light saturation point, and higher photosynthetic efficiency (a) than large colonies. Furthermore, small colonies had a higher affinity for DIC and higher DIC-saturated photosynthetic rates. In addition, small colonies showed higher photosynthetic rates from 5-45degreesC than large colonies. There was a greater decrease in Fv/Fm after exposure to high irradiance and less recovery in darkness for large colonies than for small colonies. Relative growth rate decreased with increasing colony size. Small colonies had less chl a and mass per unit surface area. The results indicate that small colonies can harvest light and acquire DIC more efficiently and have higher maximum photosynthetic rates and growth rates than large colonies.
Resumo:
Juvenile (3.0 +/- 0.2 g) gibel carp (Carassius auratus gibelio ) were fed to satiation for 8 weeks to investigate the effect of feeding frequency on growth, feed utilization and size variation. Five feeding frequencies were tested: two meals per day (M2), three meals per day (M3), four meals per day (M4), 12 meals per day (M12) and 24 meals per day (M24). The results showed that daily food intake increased significantly with the increase in feeding frequency and there was no significant difference between daily food intakes in M12 and M24 treatments. Growth rate, feed efficiency increased significantly with increasing feeding frequencies. Size variation was not affected by feeding frequency. Apparent digestibility of dry matter was not influenced by feeding frequency, while apparent digestibility of protein and energy increased significantly at high feeding frequencies. The feeding frequency had no significant effect on the moisture, lipid, protein, or energy contents of gibel carp, while the ash content decreased with increased feeding frequency. It was recommended that 24 meals per day was the optimal feeding frequency for juvenile gibel carp.
Resumo:
Experiments in tanks and cages were conducted to examine the effects of stocking density and body size of the Mitten crab (Eriocheir sinensis) on transplanted submersed macrophyte biomass. The early juvenile crab with 7.0 +/-0.6 mm. carapace width (CW) had little effect on plant biomass, regardless of the stocking densities. However, larger crabs (CW: 18.0 +/-2.2,35.0 +/-3.6, and 60.0 +/-5.7 mm) significantly influenced plant biomass, especially at large stocking densities. Predictive models, using crab body size and stocking density, were generated to demonstrate effect of the mitten crab on the changes Of plant biomass. The results indicate that dense mitten crab populations may adversely affect aquatic plant communities, particularly when its animal food resources are scarce.
Resumo:
The objectives of this work were to study the effects of several feeding stimulants on gibel carp fed diets with or without replacement of fish meal by meat and bone meal (MBM). The feeding stimulants tested were betaine, glycine, L-lysine, L-methionine, L-phenylalanine, and a commercial squid extract. Three inclusion levels were tested for each stimulant (0.18, 0.5%, and 1% for betaine and 0.1, 0.25 and 0.5% for the other stimulants). Two basal diets (40% crude protein) were used. one with 26% fish meal (FM), and the other with 21% fish meal and 6% MBM, Betaine at 0.1% in the fish meal group and at 0.5% in the meat and bone meal group was used in all experiments for comparison among stimulants. In the experiment on each stimulant, six tanks of fish were equally divided into two groups, one fed the FM diet, and the other fed the MBM diet. After 7 days' adaptation to the basal diet, in which the fish were fed to satiation twice a day, the fish were fed for another 7 days an equal mixture of diets containing varying levels of stimulants. Each diet contained a unique rare earth oxide as inert marker (Y2O3, Yb2O3, La2O3, Sm2O3 or Nd2O3). During the last 3 days of the experiment, faeces from each tank were collected. Preference for each diet was estimated based on the relative concentration of each marker in the faeces. Gibel carp fed the FM diet had higher intake than those fed the MBM diet, but the difference was significant only in the experiments on betaine, glycine and L-methionine. None of the feeding stimulants tested showed feeding enhancing effects in FM diets. All feeding stimulants showed feeding enhancing effects in MBM diets. and the optimum inclusion level was 0.5% for betaine, 0.1% for glycine, 0.25% for L-lysine, 0.1% for L-methionine. 0.25% For L-phenylalanine. and 0.1% for squid extract. The squid extract had the strongest stimulating effect among all the stimulants tested. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Two growth trials using a range of ration sizes from starvation to maximum feeding suggested that linear relationships existed between specific growth rate and ration size for Nile tilapia and givel carp, Continuous measurement of activity showed that activity level, in terms of distance swum per day, was not affected significantly by ration size in both Nile tilapia and gibel carp. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
A growth trial was conducted at 30 degrees C to investigate the effect of body size on growth and energy budget of Nile tilapia. The average initial body weights of the four size groups tested were 9.3, 34.1, 80.3 and 172.4 g, respectively. Fish were fed to satiation twice a day with a diet containing 35.6% crude protein. Food consumption (C-max: kJ/day) increased with body size (W: g) according to the relationship: Ln C-max = 1.45 + 0.42 LnW. The final body contents of dry matter, crude protein and ash per unit body weight increased with increasing body size while contents of fat and energy were independent of body size. Specific growth rates of wet weight, dry weight, protein and energy decreased as the fish increased in size. Feed efficiencies in wet weigh, dry weight and crude protein decreased with increasing body size, while that of energy remained unchanged. The proportions of energy intake allocated to the various components (faecal energy, excretory energy, heat production and recovered energy) of the energy budget were not significantly affected by body size, and the average budget was: 100IE-18.5(+/- 1.33)FE + 5.9 (+/- 3.09)(ZE + UE) + 49.3(+/- 3.77)HE + 26.3(+/- 6.23)RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. It is suggested that the decrease in growth rate in larger fish is mainly due to the decrease in relative food intake. (C) 1997 Elsevier Science B.V.
Resumo:
Nile tilapia weighing 8.29-11.02 g were fed a practical diet at seven ration levels (starvation, 0.5, 1, 2, 3, 4% body weight per day and satiation) twice a day at 30 degrees C. Feed consumption, apparent digestibility, nitrogenous excretion and growth were determined directly, and heat production was calculated by difference of energy budget. The relationship between specific growth rate in wet weight (SGR(w), percentage per day) and ration size (RL, percentage per day) was a decelerating curve described as SGR(w) = 2.98 (1 - e(-0.61(RL-0.43))). The apparent digestibility coefficients for dry matter and protein showed a decreasing pattern with increasing ration while the apparent digestibility coefficient of energy was not significantly affected by ration size. The proportion of gross energy intake lost in nitrogenous excretion tended to decrease with increasing ration. Feed efficiency was highest, and the proportion of gross energy intake channelled to heat production was lowest, at an intermediate ration level (2% per day). The energy budget at the satiation level was: 100IE = 16.9FE + 1.2(ZE + UE) + 62.3HE + 19.6RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. (C) 1997 Elsevier Science B.V.
Resumo:
The effect of potassium dichromate in concentrations of 0.5 to 10 mg/l on a laboratory culture of Sc. quadricauda algae was studied in standard conditions. The total cell numbers decreased at potassium dichromate concentrations over 1 mg/l, and the proportion of living cells decreased at all studied concentrations. A positive correlation was found between changes in cell size and their numbers at toxin concentrations of 1 and 3 mg/l, and a negative correlation was found between the relative size and the cell numbers at 3 and 10 mg/l. This may be due to different intensity of growth inhibition and cell division under the influence of the toxin. The culture sensitivity to the toxin increased in autumn and decreased in the spring.
Resumo:
Sediments and soils collected from the Ya-Er Lake area in China were analysed for the polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyl (PCBs), hexachlorocyclohexane (HCHs) and hexachlorobenzene (HCB). The results indicated the main pollution problems in the Ya-Er Lake area, which was heavily polluted by HCHs and chlorobenzenes, now is dominantly polluted by PCDD/Fs, PCBs and HCB. The occurrence of PCDD/Fs and PCBs with relatively high levels of HpCDDs, OCDD and low chlorinated-substituted PCBs, is attributed to the discharge of waste water and biodegradation. The vertical distributions of HCH-residues are related with the content of organic carbon and particle size. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Growth and energy budget were measured for three sizes(2.4, 11.1 and 22.5 g) of juvenile white sturgeon Acipenser transmontanus held at 18.5 degrees C and fed tubificid worms at different levels ranging from starvation to ad libitum. For each size-class, specific growth rate increased linearly with increasing ration, and conversion efficiency was highest at the maximum ration. Growth rate decreased with increasing fish size at the maximum ration, but increased with size al each restricted ration. Conversion efficiency increased with increasing ration for each size-class and was usually highest at the maximum ration. Faecal production accounted for 3.2-5.2% of food energy. The proportion of food energy lost in nitrogenous excretion decreased with increasing ration. With increases in ration, the allocation of metabolizable energy to metabolism decreased, while that to growth increased. Fish size had no significant effect on the allocation of metabolizable energy to metabolism or growth. Al the maximum ration, on average 64.9% of metabolizable energy was spent on metabolism, and 35.1% on growth. (C) 1996 The Fisheries Society of the British Isles
Resumo:
Nutrient addition bioassays were conducted in 10 L carboys with water from a eutrophic farm pond. The four bioassay treatments each conducted in triplicate were control (no nutrients added), +N (160 mu mol L(-1) NH4Cl), +P (10 mu mol L(-1) KH2PO4), and N+P (160 mu mol L(-1) NH4Cl and 10 mu mol L(-1) KH2PO4). The size fractionated (0.2-0.8, 0.8-3, > 3 mu m) contents of the carboys were analyzed after 7 d for alkaline phosphatase activity (APA) and chlorophyll-a content. Chlorophyll data suggested P deficiency in ammonium and control mesocosms and no P deficiency with phosphate additions. Pond water also was collected in June, August, October, and March for measurement of APA. In water from the pond, the greatest V-max of APA usually was associated with microorganisms in the size classes between 0.8-3 mu m. In mesocosm experiments, the N+P treatment increased V-max of dissolved and particulate associated APA in the 0.2-0.8 mu m size range and in dissolved form. The V-max of APA in the largest size-fraction (> 3 mu m) increased markedly with P deficiency (+N treatment) and decreased in the P-enrichment treatment. The patterns of APA and chlorophyll associated with different size fractions often varied independently among different treatments and seasons and not always as a function of P deficiency, indicating the difficulty of attempting to normalize APA to phytoplankton biomass or chlorophyll. The Michaelis half saturation constant of APA in the pond water showed no strong trends with varied seasons or size fraction.