86 resultados para logging


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the study of the combined flooding test block of Guantao formation in Third faulted block of Yangsanmu oil field, this paper carries out the integration of reservoir precise characterization for very high water cut reservoir, establishes precise 3D geologic model for high water cut development period and states the changing law of the reservoir architecture dtiring development by combined flooding. Then, by subdivided the thick oil reservoir, the study of remaining oil saturation monitoring in fiber glass cased well and tracer monitoring is developed. According the study of multiple constrained combined flooding reservoir numerical simulation, remaining oil distribution are predicted, the methods architecture of predicting remaining oil distribution are established for fluvial facies reservoir at late development stage, develops plan is designed and adjustment associating technologies for enhancing oil recovery. On these base, related measures for tapping the potential are given, it is verified and optimized through the field former test and the good economic effect is achieved . The major achievements of this paper are as follows. The changing law of the reservoir architecture and it's property parameters is revealed, The result indicates that the temperature-pressure of the injecting material and the interaction effect of the injecting material and reservoir petrography are the main factors of the dynamic changes of the reservoir architecture. The quantitative reservoir geologic model, which is tallied with dynamic reservoir parameters of the study area, is established. Subdivided the thick oil reservoir is very important for the study of the remaining oil distribution within the thick oil reservoir. Subdivided the thick oil reservoir technology, which consists of six technologies as follow: micro-cyclic divided, flow unit method, architectural element method, high resolution log technology, high resolution-process technology for normal logging data and using the production data is presented. 3. It is established dynamic monitoring system of remaining oil saturation quantitative research which are inner and interlayer remaining oil saturation from time-lapse logging in fiber glass cased well, inter-well remaining oil saturation from the technology of isotopic tracer monitoring technology, and 4d remaining oil saturation distribution from combined flooding numerical modeling integrated by production datao The forming mechanism of remaining oil for polymer flooding and alkali/polymer combined flooding is clarified, and the plane and vertical distribution law of remaining oil after combined flooding is revealed. Predicting methods and technologies for the combined flooding reservoir of fluvial facies is developed. Combined flooding has been achieved good displacement result in the pilot of Third fault block in Yangsanmu oil field, and accumulated types of important parameters and optimum plans, this technology of combined flooding is expected to increase recovery ratio by 4.77%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis show you seven interpretation models of erosion of MAs1+2 in the west of prospect and eroded gully of middle and east, form the interpretation technique how to built up eroded gully of the Ordovician top, according of the practical demand of oil-gas exploration in the ShanGanNing basin, using seismic information, combining well logging and well drilling data, Carefully analyzing geologic deposition background and well logging data, through a great quantity forward and inversion for geologic model and combination geologic model with seismic section. Related to research of reservoir absorption in the ShanGanNing basin, it firstly introduces PRONY transformation multidimensional filter. It can simultaneously express relationship of frequency and absorption decay coefficient, better than FUSAIPU analysis method; PRONY filter have obtain the better effect in the gas field of ZhenChuanBao in the ShanBei area after adopting PRONY filtering method to predict reservoir absorption, by analyzing fixed well and prediction of non-well drilling. In the ShanGanNing basin, general seismic inversion method can produce evident different results or misunderstanding because wave impedance and lithology, physical property, gas property are not sole, especially while have little impedance contrast and even have contract direction; the author carefully analyzes multi-parameter inversion technique, add natural gamma ray and natural potential and other parameter combined making model inversion method according of theory of seismic inversion and applying reservoir velocity and wave impedance information at last, we get the more directly reservoir physical property parameter, judging reservoir physical property is more exact. In accordance with geologic, seismic feature of Shan basin, the thesis conclude Ordovician system top erosion interpretation technology with ChangQing character, and reservoir thickness prediction technique combining inversion technique with wave character analysis, Reservoir physical property that is mainly absorption factor analysis and multi-parameter inversion and oil-gas prediction technology. These technologies obtain the better result in the oil-gas field exploration and have formed comprehensive research method and technology series with ShanGanNing character.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guided by geological theories, the author analyzed factual informations and applied advanced technologies including logging reinterpretation, predicting of fractal-based fracture network system and stochastic modeling to the low permeable sandstone reservoirs in Shengli oilfield. A new technology suitable for precious geological research and 3D heterogeneity modeling was formed through studies of strata precious correlation, relation between tectonic evolution and fractural distribution, the control and modification of reservoirs diagenesis, logging interpretation mathematical model, reservoir heterogeneity, and so on. The main research achievements are as follows: (1) Proposed four categories of low permeable reservoirs, which were preferable, general, unusual and super low permeable reservoir, respectively; (2) Discussed ten geological features of the low permeable reservoirs in Shengli area; (3) Classified turbidite fan of Es_3 member of the Area 3 in Bonan oilfield into nine types of lithological facies, and established the facies sequences and patterns; (4) Recognized that the main diagenesis were compaction, cementation and dissolution, among which the percent compaction was up to 50%~90%; (5) Divided the pore space in ES_3 member reservoir into secondary pores with dissolved carbonate cement and residual intergranular pores strongly compacted and cemented; (6) Established logging interpretation mathematical model guided by facies- control modeling theory; (7) Predicted the fracture distribution in barriers using fractal method; (8) Constructed reservoir structural model by deterministic method and the 3D model of reservoir parameters by stochastic method; (9) Applied permeability magnitudes and directions to describe the fractures' effect on fluid flow, and presented four different fractural configurations and their influence on permeability; (10) Developed 3D modeling technology for the low permeable sandstone reservoirs. The research provided reliable geological foundation for the establishment and modification of development plans in low permeable sandstone reservoirs, improved the development effect and produced more reserves, which provided technical support for the stable and sustained development of Shengli Oilfield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the growing development and perfection of reservoir describing technology, its research achievements have played an increasingly important role in old oilfields in recent years. Reservoir description quantitatively describes, characterizes and predicts every kind of reservoir characters in 3D space. The paper takes Banbei block reservoir as an object, studies the reservoir characters and residual oil distributing characteristics of gravity flow genetic reservoir, and definitudes potential adjustment direction of reservoir development. Main achievements are gained as follows. Through fine correlation of strati graphic sequence, the classification of layers and single sands of main payzones in Banbei block is ascertained, the classifying methods of sedimentary unit in gravity flow reservoir characterized with picked cyclical marker bed are formed. On the basis of comprehensive logging evaluation, depositional characters of Banbei block are studied, and classifying methods of sedimentary microfacies in gravity flow reservoir are described. The sedimentary background of main oil layers in Banbei block is open lake with shallow water, and belongs to lacustrine underwater gravity flow- lacustrine phase depositional system. Main microfacies types are underwater water course^ water course side-wing, underwater floodplain, between two water courses, and lacustrine mud, etc. Reservoir sands mainly are underwater water course sands. Influenced by distributing characters of gravity flow underwater water course, sand shapes in plane mainly are stripe, finger-shape, tongue-shape. Sand distribution shows obvious split property. Sands overlap each other. According to comprehensive analysis of lithologic data, logging parameters, and dynamic production data, the researching threads and methods of reservoir heterogeneous characters are perfected. The depositional characters of gravity flow underwater water course in Banbei block determine its high reservoir heterogeneity. Macroscopic heterogeneity is studied in many aspects such as the scale of layers, the scale of single sands, in-situ scale, the distribution of interlayer types, the interlayer scale, and heterogeneity in plane. Thus, heterogeneous characters of reservoir are thoroughly analyzed. Through microscopic research of reservoir, the types of porous structure and related parameters are determined. According to the analysis of dynamic production data, the reaction and inner influential factors of reservoir heterogeneity in waterflood development are further revealed. Started with the concept and classifying methods of flow unit, clustering classification which can better meet the requirements of production is formed. The flow unit of Banbei block can be classified into four types. According to comprehensive evaluation, the first and second type of flow unit have better percolating capability and reserving capability. Research thread of 3D model-building and reservoir numerical simulation combined as an integral is adopted. The types and characters of residual oil distribution are determined. Residual oil of Banbei block mainly distributes in the boundary of sands, near the faults, areas with non-perfect injection-production well pattern , undeveloped sands, vertically poor developed layers. On the basis of comprehensive reservoir study, the threads and methods of improving development effect towards reservoir with high water cut, high recovery percent, serious heterogeneity are ascertained. The whole waterflood development effect of Banbei block reservoir is good. Although its water cut and recovery percent is relatively high, there is still some potential to develop. According to depositional characters of gravity flow and actual production situation? effective means of further improving development level are as follows. We should drill new wells in every kind of areas abounding with residual oil, implement comprehensive measures such as increasing liquid discharge, cyclic waterflood, changing fluid direction when injection-production well pattern is perfected, improve water quality, enhance displacement efficiency in flooding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cross well seismic technique is a new type of geophysical method, which observes the seismic wave of the geologic body by placing both the source and receiver in the wells. By applying this method, it averted the absorption to high-frequency component of seismic signal caused by low weathering layers, thus, an extremely high-resolution seismic signal can be acquired. And extremely fine image of cross well formations, structure, and reservoir can be achieved as well. An integrated research is conducted to the high-frequency S-wave and P-wave data and some other data to determine the small faults, small structure and resolving the issues concerning the thin bed and reservoir's connectivity, fluid distribution, steam injection and fracture. This method connects the high-resolution surface seismic, logging and reservoir engineering. In this paper, based on the E & P situation in the oilfield and the theory of geophysical exploration, a research is conducted on cross well seismic technology in general and its important issues in cross well seismic technology in particular. A technological series of integrated field acquisition, data processing and interpretation and its integrated application research were developed and this new method can be applied to oilfield development and optimizing oilfield development scheme. The contents and results in this paper are as listed follows: An overview was given on the status quo and development of the cross well seismic method and problems concerning the cross well seismic technology and the difference in cross well seismic technology between China and international levels; And an analysis and comparison are given on foreign-made field data acquisition systems for cross-well seismic and pointed out the pros and cons of the field systems manufactured by these two foreign companies and this is highly valuable to import foreign-made cross well seismic field acquisition system for China. After analyses were conducted to the geometry design and field data for the cross well seismic method, a common wave field time-depth curve equation was derived and three types of pipe waves were discovered for the first time. Then, a research was conducted on the mechanism for its generation. Based on the wave field separation theory for cross well seismic method, we believe that different type of wave fields in different gather domain has different attributes characteristics, multiple methods (for instance, F-K filtering and median filtering) were applied in eliminating and suppressing the cross well disturbances and successfully separated the upgoing and downgoing waves and a satisfactory result has been achieved. In the area of wave field numerical simulation for cross well seismic method, a analysis was conducted on conventional ray tracing method and its shortcomings and proposed a minimum travel time ray tracing method based on Feraiat theory in this paper. This method is not only has high-speed calculation, but also with no rays enter into "dead end" or "blinded spot" after numerous iterations and it is become more adequate for complex velocity model. This is first time that the travel time interpolation has been brought into consideration, a dynamic ray tracing method with shortest possible path has been developed for the first arrivals of any complex mediums, such as transmission, diffraction and refraction, etc and eliminated the limitation for only traveling from one node to another node and increases the calculation accuracy for minimum travel time and ray tracing path and derives solution and corresponding edge conditions to the fourth-order differential sonic wave equation. The final step is to calculate cross well seismic synthetics for given source and receivers from multiple geological bodies. Thus, real cross-well seismic wave field can be recognized through scientific means and provides important foundation to guide the cross well seismic field geometry designing. A velocity tomographic inversion of the least square conjugated gradient method was developed for cross well seismic velocity tomopgraphic inversion and a modification has been made to object function of the old high frequency ray tracing method and put forward a thin bed oriented model for finite frequency velocity tomographic inversion method. As the theory model and results demonstrates that the method is simple and effective and is very important in seismic ray tomographic imaging for the complex geological body. Based on the characteristics of the cross well seismic algorithm, a processing flow for cross well seismic data processing has been built and optimized and applied to the production, a good section of velocity tomopgrphic inversion and cross well reflection imaging has been acquired. The cross well seismic data is acquired from the depth domain and how to interprets the depth domain data and retrieve the attributes is a brand new subject. After research was conducted on synthetics and trace integration from depth domain for the cross well seismic data interpretation, first of all, a research was conducted on logging constraint wave impedance of cross well seismic data and initially set up cross well seismic data interpretation flows. After it applied and interpreted to the cross well seismic data and a good geological results has been achieved in velocity tomographic inversion and reflection depth imaging and a lot of difficult problems for oilfield development has been resolved. This powerful, new method is good for oilfield development scheme optimization and increasing EOR. Based on conventional reservoir geological model building from logging data, a new method is also discussed on constraining the accuracy of reservoir geological model by applying the high resolution cross well seismic data and it has applied to Fan 124 project and a good results has been achieved which it presents a bight future for the cross well seismic technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to discover the distribution law of the remaining oil, the paper focuses on the quantitative characterization of the reservoir heterogeneity and the distribution law of the fluid barrier and interbed, based on fine geological study of the reservoir in Liuhuall-1 oil field. The refined quantitative reservoir geological model has been established by means of the study of core analysis, logging evaluation on vertical well and parallel well, and seismic interpretation and prediction. Utilizing a comprehensive technology combining dynamic data with static data, the distribution characteristics, formation condition and controlling factors of remaining oil in Liuhuall-1 oil field have been illustrated. The study plays an important role in the enrichment regions of the remaining oil and gives scientific direction for the next development of the remaining oil. Several achievements have been obtained as follows: l.On the basis of the study of reservoir division and correlation,eight lithohorizons (layer A, B_1, B_2, B_3, C, D, E, and F) from the top to the bottom of the reservoir are discriminated. The reef facies is subdivided into reef-core facies, fore-reef facies and backreef facies. These three subfacies are further subdivided into five microfacies: coral algal limestone, coralgal micrite, coral algal clastic limestone, bioclastic limestone and foraminiferal limestone. In order to illustrate the distribution law of remaining oil in high watercut period, the stratigraphic structure model and sedimentary model are reconstructed. 2.1n order to research intra-layer, inter-layer and plane reservoir heterogeneity, a new method to characterize reservoir heterogeneity by using IRH (Index of Reservoir Heterogeneity) is introduced. The result indicates that reservoir heterogeneity is medium in layer B_1 and B_3, hard in layer A, B_2, C, E, poor in layer D. 3.Based on the study of the distribution law of fluid barrier and interbed, the effect of fluid battier and interbed on fluid seepage is revealed. Fluid barrier and interbed is abundant in layer A, which control the distribution of crude oil in reservoir. Fluid barrier and interbed is abundant relatively in layer B_2,C and E, which control the spill movement of the bottom water. Layer B_1, B_3 and D tend to be waterflooded due to fluid barrier and interbed is poor. 4.Based on the analysis of reservoir heterogeneity, fluid barrier and interbed and the distribution of bottom water, four contributing regions are discovered. The main lies on the north of well LH11-1A. Two minors lie on the east of well LH11-1-3 and between well LH11-1-3 and well LH11-1-5. The last one lies in layer E in which the interbed is discontinuous. 5.The parameters of reservoir and fluid are obtained recurring to core analysis, logging evaluation on vertical well and parallel well, and seismic interpretation and prediction. Theses parameters provide data for the quantitative characterization of the reservoir heterogeneity and the distribution law of the fluid barrier and interbed. 6.1n the paper, an integrated method about the distribution prediction of remaining oil is put forward on basis of refined reservoir geological model and reservoir numerical simulation. The precision in history match and prediction of remaining oil is improved greatly. The integrated study embodies latest trend in this research field. 7.It is shown that the enrichment of the remaining oil with high watercut in Liuhua 11-1 oil field is influenced by reservoir heterogeneity, fluid barrier and interbed, sealing property of fault, driving manner of bottom water and exploitation manner of parallel well. 8.Using microfacies, IRH, reservoir structure, effective thickness, physical property of reservoir, distribution of fluid barrier and interbed, the analysis of oil and water movement and production data, twelve new sidetracked holes are proposed and demonstrated. The result is favorable to instruct oil field development and have gotten a good effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation resistivity is one of the most important parameters to be evaluated in the evaluation of reservoir. In order to acquire the true value of virginal formation, various types of resistivity logging tools have been developed. However, with the increment of the proved reserves, the thickness of interest pay zone is becoming thinner and thinner, especially in the terrestrial deposit oilfield, so that electrical logging tools, limited by the contradictory requirements of resolution and investigation depth of this kinds of tools, can not provide the true value of the formation resistivity. Therefore, resitivity inversion techniques have been popular in the determination of true formation resistivity based on the improving logging data from new tools. In geophysical inverse problems, non-unique solution is inevitable due to the noisy data and deficient measurement information. I address this problem in my dissertation from three aspects, data acquisition, data processing/inversion and applications of the results/ uncertainty evaluation of the non-unique solution. Some other problems in the traditional inversion methods such as slowness speed of the convergence and the initial-correlation results. Firstly, I deal with the uncertainties in the data to be processed. The combination of micro-spherically focused log (MSFL) and dual laterolog(DLL) is the standard program to determine formation resistivity. During the inversion, the readings of MSFL are regarded as the resistivity of invasion zone of the formation after being corrected. However, the errors can be as large as 30 percent due to mud cake influence even if the rugose borehole effects on the readings of MSFL can be ignored. Furthermore, there still are argues about whether the two logs can be quantitatively used to determine formation resisitivities due to the different measurement principles. Thus, anew type of laterolog tool is designed theoretically. The new tool can provide three curves with different investigation depths and the nearly same resolution. The resolution is about 0.4meter. Secondly, because the popular iterative inversion method based on the least-square estimation can not solve problems more than two parameters simultaneously and the new laterolog logging tool is not applied to practice, my work is focused on two parameters inversion (radius of the invasion and the resistivty of virgin information ) of traditional dual laterolog logging data. An unequal weighted damp factors- revised method is developed to instead of the parameter-revised techniques used in the traditional inversion method. In this new method, the parameter is revised not only dependency on the damp its self but also dependency on the difference between the measurement data and the fitting data in different layers. At least 2 iterative numbers are reduced than the older method, the computation cost of inversion is reduced. The damp least-squares inversion method is the realization of Tikhonov's tradeoff theory on the smooth solution and stability of inversion process. This method is realized through linearity of non-linear inversion problem which must lead to the dependency of solution on the initial value of parameters. Thus, severe debates on efficiency of this kinds of methods are getting popular with the developments of non-linear processing methods. The artificial neural net method is proposed in this dissertation. The database of tool's response to formation parameters is built through the modeling of the laterolog tool and then is used to training the neural nets. A unit model is put forward to simplify the dada space and an additional physical limitation is applied to optimize the net after the cross-validation method is done. Results show that the neural net inversion method could replace the traditional inversion method in a single formation and can be used a method to determine the initial value of the traditional method. No matter what method is developed, the non-uniqueness and uncertainties of the solution could be inevitable. Thus, it is wise to evaluate the non-uniqueness and uncertainties of the solution in the application of inversion results. Bayes theorem provides a way to solve such problems. This method is illustrately discussed in a single formation and achieve plausible results. In the end, the traditional least squares inversion method is used to process raw logging data, the calculated oil saturation increased 20 percent than that not be proceed compared to core analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbidity sandstone reservoirs have been an important field of hydrocarbon exploration and development in the basins all over the world, as well as in China. Lithologic pools are composed of turbidity sandstones and other sandstones are frequently found in the Jiyang Depression that is a Mesozoic-Cenozoic non-marine oil-bearing basin. The Dongying Sag lies in the sedimentary center of the basin. The subtle traps with turbidity reservoirs are generally difficult to be predicted and described by using current techniques. The studies on turbidity reservoirs plays thus an important theoretical and theoretical practical role in exploration and development in the Jiyang Depression. The attention is, in this thesis, focused on the petrologic properties and oil accumulating behaviors in lake turbidity sedimentary systems in the middle part of the third section of Shahejie Formation in the Dongying Sag, especially in Dongxin area, which lies on the central uplift of the Sag. The paper has disclosed the origin types of turbidity sandstones, distribution pattern and controlling factors of turbidity sandstones, and set up hydrocarbon accumulation patterns of the middle part of the third section of Shahejie Formation in Dongxin, based on nonmarine high resolution sequence stratigraphy, event sedimentology and new theories of hydrocarbon forming. By studying prediction method and technology of turbidity sandstone reservoirs, using precise geological model developing, new techniques of high resolution seismic inversion constrained by logging, the paper has forecast low permeability turbidity sandstone reservoirs and pointed out advantage exploration aims to progressive exploration and development. The paper has obtained mainly many productions and acknowledges as follows: 1.Turbidity sandstone reservoirs of the third section of Shahejie Formationin Dongying Sag are formed in such specifical geological background as rift and extension of basin. The inherited Dongying delta and transgression make up many turbidity distribution areas by overlaying and joining together. The hydrocarbon migrates from depression area to adjacent turbidity sandstone continuously. Accumulation area which is sufficient in oil is formed. 2.The paper has confirmed distinguishable sign of sequence boundary , established stratigraphic framework of Dongying Sag and realized isotime stratigraphic correlation. Es3 of Dongying delta is divided into eleven stages. Among them, the second period of the lower section in Es3, the sixth period of the middle section in Es3, the third period of the upper section in Es3 correspond to eleven sedimentary isotime surface in seismic profile, namely Es3 is classified into eleven Formations. 3.According to such the features of turbidity sandstone as deep in burial, small in area, strong in subtle property, overlaying and joining together and occurring in groups, management through fault and space variations of restriction quantum are realized and the forecast precision of turbidity sandstone by using precise geological model developing, new techniques of high resolution seismic inversion constrained by logging, based on the analysis of all kinds of interwell seismic inversion techniques. 4.According to the features of low permeable turbidity sandstone reservoirs, new method of log interpretation model is put forward. At the same time, distinguish technology of familiar low resistivity oil layer in the turbidity sandstone reservoirs is studied based on petrophysical laboratory work and "four properties" interrelationship between lithological physical Jogging and bearing hydrocarbon properties. Log interpretation model and reservoir index interpretation model of low resistivity oil layer are set up. So the log interpretation precision is improved. 5.The evolution law and its difference of the turbidity sandstone are embodies as follows: the source of sediments come from the south and east of the study area in the middle period of Es3. East source of sediments is pushed from west to east. However, the south source supply of sediments in the early and middle period of Es3 is in full, especially in Es3. subsequently, the supply is decreased gradually. Turbidity fan moves back toward the south and the size of fan is minished accordingly. The characteristic of turbidity sandstone in Dongying Sag is different in different structural positions. Dongxin in the middle-east of the central lift and Niuzhuang Sag He in Dongying delta front and prodelta deep lake subfacies. Although the turbidity sandstone of the two areas root in the Dongying delta sedimentary system, the sand body has different remarkably characteristic. 6.The sedimentary model of the turbiditys in study area have three types as follows: (1) collapse turbidity fan in respect of delta; (2) fault trench turbidity fan; (3) other types of microturbidity sandstone. Middle fan and outer fan, can be found mainly in sublacustrine fan. Middle fan includes braided channel microfacies, central microfacies and braided interchannel microfacies, which is main prospecting oil-bearing subfacies. The middle section of the third section of Shahejie Formation in study area (for example the central lift) can be divided into middle-lower and upper part. The middle-lower part is characteristic of turbidity fan. The upper part is sedimented mainly by delta-collapse fan. 7.The turbidity reservoirs of the middle part of the third section of Shahejie Formation in study area characterize by low maturity both in component and texture, strong in diagenesis and low in permeability. The reservoir can be classified into four types. Type III is the body of reservoir and comprises two types of H a and HI b. M a belongs to middle porosity - low permeability reservoir and distributes in the central lift. Hlb belongs to low porosity - low permeability and distributes in Haojia region. 8.A11 single sand body of lens turbidity reservoir of the middle part of the third section of Shahejie Formation in study area are surrounded by thick dark source rocks. The oil-water system is complex and behaves that every sandstone is single seal unit. The water body is 1/3-1-5 of the sand body. The edge water is not active. The gas exists in the top of reservoir in the form of mixed gas. For far-range turbidity fan with big scale channel, the area and volume of sand body is large and the gap is big in oil packing degree. There are lots of edge water and bottom water, and the latter increases rapidly during the course of development. 9.By exerting the modern hydrocarbon forming theories, the third section of Shahejie Formation in study area belongs to abnormally pressured fluid compartment. The lithological reservoir of the third section of Shahejie Formation is formed in the compartment. The reservoir-formed dynamic system belongs to lower self-source enclosed type. The result and the practice indicate that the form and accumulation of lithological oil reservoirs are controlled by the temperature and pressure of stratum, microfacies, thickness of sand body, fault and reservoir heterogeneity. 10. Based on studies above, the emphases focus on in south and north part of Dongying structure, west Dongxin region and south part Xinzhen structure in the application of production. The practice proves that the turbidity sandstone reservoirs in Ying 11 block and the fault-lithological reservoirs in Xin 133 block have been obtained significant breakthrough. The next target is still sandstone groups of the third section of Shahejie Formation in the bordering areas of Dongxin region for instance Xin 149 area, He 89 area, Ying 8 area etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low resistivity reservoir is a special reservoir which is different from normal reservoir in identification and evaluation.Through core experiment and analysis, the achievement of which resistivity is resulted from clay additive electric conductivities and high bound water saturation in Junggar basin is gained. For accurately evaluating low resistivity, a good many of experiment have been completed, such as resistivity index and formation factor in hi^jher temperature and higher pressure, semi-permeability board, cation exchange, bound water, NMR (nucleus magnetism response), non-Nad water in different temperature and salinity, the experiments result show that lower resistivity has complex relation with these electric-parameters and chloric ion content in non-NaCl water.Based on comprehensive interpretation of NMR and normal resistivity data, the volume of moved water, bound water, moved oil and residual oil in the strata can be determined quantitatively and which have significant influence on reservoir recognition and perforation optimized.Experiment data (SEM mold, thin section, X ray diffraction, mercury penetration) can be used to analysis low resistivity forming and the relation between low resistivity and pore texture, to set up relation between porosity, permeability and petrophysical property. The reservoir was sorted, evaluated and described. The oil bedding in southern margin of Junggar basin is low porosity, low resistivity reservoir.Based on invasion theory of electric well-logging, modelling and inversion of resistivity well-logging are accomplished. For enhancing low resistivity resulted from higher bound water saturation and cation exchange, invasion period, invasion radius, the relation between fluid distribution in pore and response of laterolog logging have been studied. Virgin zone resistivity, invasion zone resistivity and invasion radius were inversed and which enhanced evaluation accuracy of reservoir. The method was used to process well-logging data in Luliang oilfield and southern margin in Junggar basin, and reservoir resistivity was enhanced effectively, appropriate oil saturation gained and it has better effect on oil exploration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permian reservoir in Sulige area of Ordos Basin, on which this paper focused, belongs to fluvial-delta lithofacies. The majority formations in this area are complicated channel sand deposit with serious inhomogeneity which makes natural gas exploration be very tough in this area. This inhomogeneity can be found everywhere both in large horizontal area and vertical profile of inner and interbedded formations.This paper studied the inhomogeneity characteristic of Permian formation in sulige area of Ordos Basin according to the logging data.Correlating with core data, a criterion to distinguish different type of reservoirs by using logging data is determined after the study of logging response is done considering the diverse conditions of deposit environments, lithology and reservoir space. The characteristic relationships between the various type formations and logging responses fully and systemically are established.It investigated reservoir parameter calculation methods amply. Combining the conventional and special logging data, basing on the feature of low porosity -permeability formation of sulige area, a set of methods to calculate reservoir parameters was formed including primary porosity, secondary porosity, fracture porosity, permeability and water saturation under the conditions of both low porosity-permeability and inhomogenous reservoirs. One thing should be pay close attention is the parameter M for calculating saturation. It is found that the M in low porosity -permeability formation decreases as the porosity decrease, which is opposite to the law that M increases as the porosity decrease in the formation with intermediate to high porosity and permeability. This view has innovated the traditional theory and offered theory basis for the logging interpretation of low porosity - permeability reservoir. Meanwhile it also improved the Arqi formula theoretically and enhanced the logging interpretation accuracy and rescued a number of formations which has been thought to be hopeless according to the old theory.By using advantage logging interpretation procedure, a territorial synthetic geology evaluation to the inhomogeneous reservoir was completed basing on the single well interpretation. All the reservoir evaluation parameters including sand formation thickness, primary porosity, secondary porosity were calculated and evaluated. The rules of changing and development for sand formation thickness, sand physical properties and secondary porous were found at different formations of upper part of the Member 8 of Shihezi, lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi individually. Evaluation and Correlation of these five formations were also completed and one conclusion was arrived: upper part of the Member 8 of Shihezi formation has the best performance followed by the lower part of the Member 8 of Shihezi, the Member 1 of shanxi and the Member 2 of shanxi formation.After studied the relationship between reservoir deposition characteristic and the natural gas richness, it is regarded that reservoir inhomogeneity is the key issue of the impaction on the natural gas. Natural gas in Sulige gas field was mainly accumulated in sands of channel bar, distributary channel and debouchure bar. Especially, the quartz sand with rich of secondary porous space has obvious better physical properties than other reservoir and usually can forms the concentration of natural gas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gaochentou region is located in the southwest direction of Gaochentou village in Huanghua city of Hebei province. In regionally structural position, It lies in Qikou sag In the middle part of Huanghua depression, which belongs to the east part of the south Dagang structure zone in the middle part of Huanghua depression. Its' very beneficial at regional structure in Gaochentou , and It becomes the advantage area for oil and gas gathered and preserved, Sandstone reservoir of Dongying Formation is main bearing bed .Dongying Formation in Gaochentou region of Huanghua depression is consisted of set of mudstone and sandstone interbeds by deposited delta fades . Dongying Formation can be divided into 3 members from above to below: the first member of Dongying Formation (FMDF), the second member of Dongying Formation (SMDF), and third member of Dongying Formation (TMDF). The lithology of the upper part of FMDF was consisted of mostly middle-grained and fine-grained sandstone, and it is small for the oil-bearing area of the sand bodies .The lithology of the lower part is coarse-grained sandstone bodies which are well connected between sandstone bodies of wells, and the lower part was main bed of oil production in Dongying Formation; SMDF and TMDF are consisted of larger scale set of mudstone, in which the sandbodies are lenticular and pinch out quickly, and the lithology was mostly fine sandstone and silt stone, in which there are little oil and gas .Because the reservoirs in this area are largely influenced by the factors such as lithology, fault and others, and the reservoirs have the strong,heterogeneity , there exists the problem of oil-down and water-up for vertical distribution of oil and gas bearing. It is not very clearly for the three dimension distribution of sandstone , and the geology researchs is not enough. So, it can't satisfy the need of further development and production for Gaochentou oilfield.Having the key problem of oil-down and water-up and the mechanism of the reservoir for Gaochentou area, There are as follow study works, the first, is study of the high-resolution correlation of sequence stratigraphy and sedimentary microfacies. Dongying Formation was divided into three parasequence sets and each parasequence set was divided into different amount of parasequences. FMDF, as the main oil and gas producing bed, can be divided into seven parasequences. Oil and gas are discovered in six parasequences except the seventh. On the basis of study of sedimentary microfacies, the sediments of Dongying Formation are considered deposited mainly in delta front subfacies. The microfacies types of Dongying Formation are sub-water distirbutary channel, sub-water natural bank, inter distributary channel bay, distributary channel mouth dam, and delta front mat sand.Seismic facies analysis and logging-constrained inversion technique were applied by Author for transverse prediction of sandstone reservoir. Having 4 modes of interwell single sandbodies correlation technique, Author have described distribution characteristics of sandbodies, and established geological reservoir model of Gaochentou reservoir.Author presented that the reservoirs characteristic have very strong heterogeneity ,and In the section of sandstone interlayed with mudstone,the folium sandstone interlayed with each other, and the wedge shaped sandbodies pinched out in the mudstone. So the pinch-out up sandstone trap and lenticular sandstone trap are easily formed. They are most small scale overlying pinches out in the place of slope. This article applies the concept of deep basin oil to resolve reasonably the problem of which the oil is below the water in Gaochentou area. Combined with the study of sedimentary facies, reservoir and other aspects, the mechanism and patterns of deep basin oil are studied on the basis of characteristics in Gaochentou area.On the basis of the above study, the mechanism of the oil and gas' migration and accumulation in isotropic sandstone and heterogeneous sandstone are thoroughly analyzed through experiments on physical modeling. Experiments on physical modeling show that the discrepancy between sand layers with different permeability and thickness has important influence on the direction, path, and injection layer of oil's migration. At the beginning of the injection of oil and gas in high permeability sand layer, the pressure is low, the migration resistance is small, and the oil and gas are more easily displacing the water in sand. So it can act as good transformation layer or reservoir. But at the beginning of the injection of oil and gas in sand layer with low permeability, the pressure is high, the migration resistance is big, and the oil and gas are more difficultly displacing the water in sand. So it can only act as bad or worse transformation layer or reservoir. Even if it cannot act as transformation layer or reservoir, it can act as water layer or dry layer. The discrepancy between sand layers on permeability and thickness can make discrepancy in injection of oil and gas between different layers. Consequently it leads to small amount of oil and gas injection in sand layers with low permeability. Ultimately it affects the oil's accumulation and distribution in different sand layers.At Last, combining analysis of the structure and pool forming condition, The thesis has established models of reservoir formation to predict the advantage distribution of oil and gas bearing , and put forward the prospective target It is not only of theoretical signification for explosion and importance, but also has realistic value in guiding the progressive petroleum exploration and exploitation.