177 resultados para laser field
Resumo:
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
Resumo:
To resolve the diffraction problems of the pulsed wave field directly in the temporal domain, we extend the Rayleigh diffraction integrals to the temporal domain and then discuss the approximation condition of this diffraction formula. (C) 1997 Optical Society of America.
Resumo:
Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.
Resumo:
The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.
Resumo:
The nonlinear dynamics of 1.6-mu m fs laser pulses propagating in fused silica is investigated by employing a full-order dispersion model. Different from the x-wave generation in normally dispersive media, a few-cycle spatiotemporally compressed soliton wave is generated with the contrary contributions of anomalous group velocity dispersion (GVD) and self-phase-modulation. However, at the tailing edge of the pulse forms a shock wave which generates separate and strong supercontinuum peaked at 670 nm. It is also the origin of conical emission formed both in time and frequency domain with the contribution of normal GVD at visible light.
Resumo:
The dynamics of the plasma ions in the wake fields of short, ultraintense laser pulses in underdense plasmas are investigated analytically and numerically. Owing to the large ion-to-electron mass ratio, the motion of plasma ions in-such wake fields has often been assumed to be neglectable. It is shown that when the laser intensity exceeds 10(20) W/cm(2), the ion motion can no longer be ignored. In this case, ion momentum peaks appear behind the laser pulse, which correspond with the ion density peaks. The laser-excited wake field appears to be effective for ion acceleration, in particular to ions with high-charge numbers. The dependence of ion acceleration on the laser intensity, pulse width, and background plasma density is discussed. (c) 2006 Optical Society of America.
Resumo:
Particle-in-cell simulations are performed to study the acceleration of ions due to the interaction of a relativistic femtosecond laser pulse with a narrow thin target. The numerical results show that ions can be accelerated in a cascade by two electrostatic fields if the width of the target is smaller than the laser beam waist. The first field is formed in front of the target by the central part of the laser beam, which pushes the electron layer inward. The major part of the abaxial laser energy propagates along the edges to the rear side of the target and pulls out some hot electrons from the edges of the target, which form another electrostatic field at the rear side of the target. The ions from the front surface are accelerated stepwise by these two electrostatic fields to high energies at the rear side of the target. The simulations show that the largest ion energy gain for a narrow target is about four times higher than in the case of a wide target. (c) 2006 American Institute of Physics.
Resumo:
The effect of the mixing of pulsed two color fields on the generation of an isolated attosecond pulse has been systematically investigated. One main color is 800 nm and the other color (or secondary color) is varied from 1.2 to 2.4 mu m. This work shows that the continuum length behaves in a similar way to the behavior of the difference in the square of the amplitude of the strongest and next strongest cycle. As the mixing ratio is increased, the optimal wavelength for the extended continuum shifts toward shorter wavelength side. There is a certain mixing ratio of intensities at which the continuum length bifurcates, i.e., the existence of two optimal wavelengths. As the mixing ratio is further increased, each branch bifurcates again into two sub-branches. This 2D map analysis of the mixing ratio and the wavelength of the secondary field easily allows one to select a proper wavelength and the mixing ratio for a given pulse duration of the primary field. The study shows that an isolated sub-100 attosecond pulse can be generated mixing an 11 fs full-width-half-maximum (FWHM), 800 laser pulse with an 1840 nm FWHM pulse. Furthermore the result reveals that a 33 fs FWHM, 800 nm pulse can produce an isolated pulse below 200 as, when properly mixed. (c) 2008 Optical Society of America.
Resumo:
By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Acceleration of an initially moving electron by a copropagation ultra-short ultra-intense laser pulse in vacuum is studied. It is shown that when appropriate laser pulse parameters and focusing conditions are imposed, the acceleration of electron by ascending front of laser pulse can be much stronger compared to the deceleration by descending part. Consequently, the electron can obtain significantly high net energy gain. We also report the results of the new scheme that enables a second-step acceleration of electron using laser pulses of peak intensity in the range of 10(19)-10(20) W mu m(2)/cm(2). In the first step the electron acceleration from rest is limited to energies of a few MeV, while in the second step the electron acceleration can be considerably enhanced to about 100 MeV energy.
Resumo:
We present a novel technique to fabricate deeply embedded microelectrodes in LiNbO3 using femtosecond pulsed laser ablation and selective electroless plating. The fabrication process mainly consists of four steps, which are (1) micromachining of microgrooves on the surface of LiNbO3 by femtosecond laser ablation; (2) formation of AgNO3 films on substrates; (3) scanning the femtosecond laser beam in the fabricated microgrooves for modi. cation of the inner surfaces; and (4) electroless copper plating. The void-free electroless copper plating is obtained with appropriate cross section of microgrooves and uniform initiation of the autocatalytic deposition on the inner surface of grooves. The dimension and shape of the microelectrodes could be accurately controlled by changing the conditions of femtosecond laser ablation, which in turn can control the distribution of electric field inside LiNbO3 crystal for various applications, opening up a new approach to fabricate three-dimensional integrated electro-optic devices. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Ion acceleration by ultrashort circularly polarized laser pulse in a solid-density target is investigated using two-dimensional particle-in-cell simulation. The ions are accelerated and compressed by the continuously extending space-charge field created by the evacuation and compression of the target electrons by the laser light pressure. For a sufficiently thin target, the accelerated and compressed ions can reach and exit from the rear surface as a high-density high-energy ion bunch. The peak ion energy depends on the target thickness and reaches maximum when the compressed ion layer can just reach the rear target surface. The compressed ion layer exhibits lateral striation which can be suppressed by using a sharp-rising laser pulse. (c) 2008 American Institute of Physics.
Resumo:
We investigate experimentally the high-order harmonic generation from aligned CO2 molecules and demonstrate that the modulation inversion of the harmonic yield with respect to molecular alignment can be altered dramatically by fine-tuning the intensity of the driving laser pulse for harmonic generation. The results can be modeled by employing the strong field approximation including a ground state depletion factor. The laser intensity is thus proved to be a parameter that can control the high-harmonic emission from aligned molecules.
Resumo:
We investigate the higher spectral component generations driven by a few-cycle laser pulse in a dense medium when a static electric field is present. Our results show that, when assisted by a static electric field, the dependence of the transmitted laser spectrum on the carrier-envelope phase (CEP) is significantly increased. Continuum and distinct peaks can be achieved by controlling the CEP of the few-cycle ultrashort laser pulse. Such a strong variation is due to the fact that the presence of the static electric field modifies the waveform of the combined electric field, which further affects the spectral distribution of the generated higher spectral components.
Resumo:
Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.