92 resultados para isothermal calorimetry
Resumo:
Polyamide 1010/poly(propylene) (PA1010/PP) blends were investigated with and without the addition of poly(propylene)-graft-glycidyl methacrylate (PP-g-GMA). The effect of the compatibilizer on the thermal properties and crystallization behavior was determined by differential scanning calorimetry and wide-angle X-ray diffraction. From the results it is found that the crystallization of PA 1010 is significantly affected by the presence of PP-g-GMA. PP/PA 1010 (75/25) blends containing higher amounts of PP-g-GMA show concurrent crystallization at the crystallization temperature of PP. Isothermal crystallization kinetics also were performed in order to investigate the influence of the compatibilized process on the nucleation and growth mechanism. In the PP/PA 1010 (25/75) blends, concurrent crystallization behavior was not observed, even though the amount of PPg-GMA was high.
Resumo:
The miscibility and crystallization behavior of poly(beta-hydroxybutyrate) (PHB) and poly(p-vinylphenol) (PVPh) blends were studied by differential scanning calorimetry and optical microscopy (OM). The blends exhibit a single composition-dependent glass transition temperature, characteristic of miscible systems, A depression of the equilibrium melting temperature of PHB is observed. The interaction parameter values obtained from analysis of the melting point depression are of large negative values, which suggests that PHB and PVPh blends are thermodynamically miscible in the melt. Isothermal crystallization kinetics in the miscible blend system PHB/PVPh was examined by OM. The presence of the amorphous PVPh component results in a reduction in the rate of spherulite growth of PHB. The spherulite growth rate is analyzed using the Lauritzen-Hoffman model, The isothermally crystallized blends of PHB/PVPh were examined by wide-angle X-ray diffraction and smell-angle X-ray scattering (SAXS). The long period obtained from SAXS increases with the increase in PVPh component, which implies that the amorphous PVPh is squeezed into the interlamallar region of PHB.
Resumo:
Isothermal melt and cold crystallization kinetics of PEDEKmK linked by meta-phenyl and biphenyl were investigated by differential scanning calorimetry in two temperature regions. Avrami analysis is used to describe the primary stages of the melt and cold crystallization, with exponent n = 2 and n = 4, respectively. The activation energies are -118 kJ/mol and 510 kJ/mol for crystallization from the melt and the glassy states, respectively. The equilibrium melting point T-m(0) is estimated to be 309 degrees C by using the Hoffman-Weeks approach, which compares favorably with determination from the Thomson-Gibbs method. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma = 8.45 erg/cm(2) and sigma(e) = 45.17 erg/cm(2), respectively. The work of chain folding q is determined as 3.06 kcal/mol. These observed crystallization characteristics of PEDEKmK are compared with those of the other members of poly(aryl ether ketone) family. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Analysis of the nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK) was performed by using differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could describe only the primary stage of nonisothermal crystallization of PEEKK. And, the Ozawa analysis, when applied to this polymer system, failed to describe its nonisothermal crystallization behavior. A new and convenient approach for the nonisothermal crystallization was proposed by combining the Avrami equation with the Ozawa equation. By evaluating the kinetic parameters in this approach, the crystallization behavior of PEEKK was analyzed. According to the Kissinger method, the activation energies were determined to be 189 and 328 kJ/mol for nonisothermal melt and cold crystallization, respectively.
Resumo:
The nonisothermal crystallization behavior and melting process of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide) (PEG) diblock copolymer in which the weight fraction of the PCL block is 0.80 has been studied by using differential scanning calorimetry (DSC). Only the PCL block is crystallizable, the PEO block with 0.20 weight fraction cannot crystallize. The kinetics of the PCL/PEO diblock copolymer under nonisothermal crystallization conditions has been analyzed by Ozawa's equation. The experimental data shows no agreement with Ozawa's theoretical predictions in the whole crystallization process, especially in the later stage. A parameter, kinetic crystallinity, is used to characterize the crystallizability of the PCL/PEO diblock copolymer. The amorphous and microphase separating PEO block has a great influence on the crystallization of the PCL block. It bonds chemically with the PCL block, reduces crystallization entropy, and provides nucleating sites for the PCL block crystallization. The existence of the PEO block leads to the occurrence of the two melting peaks of the PCL/PEO diblock copolymer during melting process after nonisothermal crystallization. The comparison of nonisothermal crystallization of the PCL/PEO diblock copolymer, PCL/PEO blend, and PCL and PEO homopolymers has been made. It showed a lower crystallinity of the PCL/PEO diblock copolymer than that of others and a faster crystallization rate of the PCL/PEO diblock copolymer than that of the PCL homopolymer, but a slower crystallization rate than that of the PCL/PEO blend. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The overall isothermal crystallization kinetics for neat polypropylene and grafted polypropylene systems were investigated. The rate constants were corrected assuming the heterogeneous nucleation and three dimensional growth of polypropylene spherulites. A semiempirical equation for the radial growth rate of polypropylene spherulites was developed as a function of temperature, and was used to determine the number of effective nuclei of different temperatures. The number of nuclei in grafted samples was estimated to be 10(2)-10(3) times larger than that of neat polypropylene. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The thermal properties of ethylene-propylene copolymer grafted with glycidyl methacrylate (EP-g-GMA) were investigated by using differential scanning calorimetry (DSC). Compared to the plain ethylene-propylene copolymer (EP), peak values of melting temperature (T-m) of the propylene sequences in the grafted EP changed a little, crystallization temperature (T-c) increased about 8-12 degrees C, and melting enthalpy (Delta H-m) increased about 4-6 J/g. The isothermal and nonisothermal crystallization kinetics of grafted and ungrafted samples was carried out by DSC. Within the scope of the researched crystallization temperature, the Avrami exponent (n) of ungrafted sample is 1.6-1.8, and those of grafted samples are all above 2. The crystallization rates of propylene sequence in EP-g-GMA were faster than that in the plain EP and increased with increasing of grafted monomer content. It might be attributed to the results of rapid nucleation rate. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The crystallization and melting behaviours of a multiblock copolymer comprising poly(ether ether ketone) (PEEK) and poly(ether sulfone) (PES) blocks whose number average molecular weights <((M)over bar (n)'s)> were 10 000 and 2900, respectively, were studied. The effect of thermal history on crystallization was investigated by wide-angle X-ray diffraction measurement. A differential scanning calorimeter was used to detect the thermal transitions and to monitor the energy evolved during the isothermal crystallization process from the melt. The results suggest that the crystallization of the copolymer becomes more difficult as compared with that of pure PEEK. The equilibrium melting point of the copolymer was found to be 357 degrees C, about 30 degrees C lower than that of pure PEEK. During the isothermal crystallization, relative crystallinity increased with crystallization time, following an Avrami equation with exponent n approximate to 2. The fold surface free energy for the copolymer crystallized from the melt was calculated to be 73 erg cm(-2), about 24 erg cm(-2) higher than that of pure PEEK. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The melting behavior of semicrystalline poly(ether ether ketone ketone) (PEEKK) has been studied by differential scanning calorimetry (DSC). When PEEKK is annealed from the amorphous state, it usually shows two melting peaks. The upper melting peaks arise first, and the lower melting peaks are developed later. The upper melting peaks shown in the DSC thermogram are the combination (addition) of three parts: initial crystal formed before scanning; reorganization; and melting-recrystallization of lower melting peaks in the DSC scanning period. In the study of isothermal crystallization kinetics, the Avrami equation was used to analyze the primary process of the isothermal crystallization; the Avrami constant, n, is about 2 for PEEKK from the melt and 1.5 for PEEKK from the glass state. According to the Lauritzen-Hoffman equation, the kinetic parameter of PEEKK from the melt is 851.5 K; the crystallization kinetic parameter of PEEKK is higher than that of PEEK, and suggests the crystallizability of PEEKK is less than that of PEEK. The study of crystallization on PEEKK under nonisothermal conditions is also reported for cooling rates from 2.5 degrees C/min to 40 degrees C/min, and the nonisothermal condition was studied by Mandelkern analysis. The results show the nonisothermal crystallization is different from the isothermal crystallization. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The isothermal crystallization and melting behavior of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide)(PEO) diblock copolymer has been studied by WAXD, SAXS, and DSC methods. Only the PCL block is crystallizable; the PEO block of weight fraction 20% cannot crystallize, although its corresponding homopolymer has strong crystallizability. The long period, amorphous layer, and crystalline lamella of the PCL/PEO block copolymer all increase with the rise in the crystallization temperature, and the thickness of the amorphous layer is much larger than that of crystalline lamella due to the existence of the PEO block in the amorphous region. The isothermal crystallization of the PCL/PEO block copolymer is investigated by using the theory of Turnbull and Fischer. It is found that the amorphous PEO block has a great influence on the nucleation of PCL block crystallization, and the extent of this influence depends on crystallization conditions, especially temperature. The outstanding characteristics are the phenomenon of the double melting peaks in the melting process of the PCL/PEO block copolymer after isothermal crystallization at different temperatures and the transformation of melting peaks from double peaks to a single peak with variations in the crystallization condition. They are related mainly to the existence of the PEO block bonding chemically with the PCL block. In summing up results of investigations into the crystallization and melting behavior of the PCL/PEO block copolymer, it is interesting to notice that when the PCL/PEO block copolymer crystallizes at three different crystallization temperatures, i.e., below 0 degrees C, between 0 and 35 degrees C, and above 35 degrees C, the variation of peak melting temperature is similar to that of overall crystallization rates in the process of isothermal crystallization. The results can be elucidated by the effect of the PEO block on the crystallization of the PCL block, especially its nucleation. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Based on Jeziorny theory, the kinetics of phase transition of poly(ester-imide) has been determined under non-isothermal condition by using differential scanning calorimetry (DSC). Avrami exponent n, kinetic parameters G(c) and rate constant Z(c) were derived and discussed.
Resumo:
The melting behavior of poly(methyl methacrylate)-grafted nascent polyethylene reactor powder by plasma irradiation was studied by differential scanning calorimetry (DSC). The grafting yield ranged hom 11 to 190%. Grafting was found to lower both melting point and heat of fusion during the first run of DSC determination. The heat of fusion was used to calculate the apparent grafting yield of the samples. There was little strain induced by plasma-irradiated grafting on the surface of the polyethylene crystals. A method to determine the covalent grafting yield in the graft copolymer systems was developed. (C) 1995 John Wiley & Sons, Inc.
Resumo:
The aim of this work is to describe the most recent achievements in the field of the physical chemistry of mixing. The systems studied have been classified according to the amount of thermic effect due to the blending and its interpretation. When polystyrene (PS) and poly(alpha-methylstyrene) (P alpha MS) are blended, the interaction is weak and Delta(mix)H is close to zero. The presence of polar atoms and/or groups increases the stability of the blend and, therefore, Delta(mix)H becomes more negative. Poly(ethylene oxide) (PEO), poly(methyl acrylate) (PMA), poly(methyl methacrylate) (PMMA) and poly(vinylacetate) (PVAc), when mixed to form binary systems, show large differences from their properties when pure. If hydrogen bonding takes place, the interactions are readily detected and a large effect is calorimetrically determined. Cellulose diacetate (CDA) and poly(vinylpyrrolidone) (PVP) have been studied as an example of a strongly interacting system.
Resumo:
The stability constants and thermodynamic functions for complexes of rare earth with L-phenylalanine have been determined by potentiometry and calorimetry at 25-degrees-C and ionic strength of 0.15mol.dm-3(NaCl). Stability of the complexes shows the "Tetrad effect". The entropy change makes a predominant contribution to the stability of these complexes. The ligand is coordinated to rare earth ions through its -CO2- and -NH2 group, and dehydration of ions plays an important role in coordination reaction.
Resumo:
A new isothermal equation of state for polymers in the solid and the liquid is given by P = B(T, 0)/(n - m){[V(T, 0)/V(T, P)]n + 1 - [V(T, 0)/V(T, P)]m + 1} where n = 6.14 and m = 1.16 are general constant's for polymer systems. Comparison of the equation with experimental data is made for six polymers at different temperatures and pressures. The results predict that the equation of state describes the isothermal compression behaviour of polymers in the glass and the melt states, except at the transition temperature.