116 resultados para inorganic pyrophosphate
Resumo:
A novel organic-inorganic hybrid compound {[Cu (2, 2'-bpy)(2)](2)Mo8O26} has been hydrothermally Synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group, Pna2(1), with a=2.4164 (5), b=1.8281 (4), c=1.1877 (2) nm, V=5.247(2) nm(3), Z=4, and final R-1=0.0331, wR(2)=0.0727. The structure consists of discrete {[Cu(2,2'-bpy)(2)](2)Mo8O26} clusters, constructed from a beta -octamolybdate subunit[Mo8O26](4-) covalently bonded to two [Cu(2,2'-bpy)(2)](2+) coordination complex cations via bridging oxo groups. In addition, the spectroscopic properties and thermal behavior of this compound have been investigated by spectroscopic techniques (UV-vis, IR, Raman and EPR spectra) and TG analysis.
Resumo:
Transparent organic-inorganic hybrid monoliths containing rare-earth complexes (Eu(TTA)(3)Phen, Tb(Sal)(3)) were prepared via the sol-gel technique. It could be observed by transmission electron microscopy that the fluorescent particles are distributed in the matrix at the microscopic level. The matrix is composed of organic-inorganic semiinterpenetrating networks, i.e., PHEMA-SiO2 system. The fluorescence emission spectra of samples are similar to those from corresponding powdered Eu(III) and Tb(III) complexes, and the half-widths of the strongest bands are less than 10 nm, which indicates that the monolith exhibits high fluorescence intensity and color purity. Furthermore, the fluorescence spectra exhibit no obvious change with decreasing nanoparticle size of the rare-earth complex. The fluorescence lifetimes of samples are longer than pure Eu(III), Tb(III) complexes, respectively. Samples irradiated with an UV lamp (365 nm) are still transparent but become bright red and green in color due to fluorescence of Eu(III) and Tb(III) complexes. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
poly(epsilon-caprolactone) (PCL) and silica (SiO2) organic-inorganic hybrid materials have been synthesized by sol-gel approach and the crystalline behavior of PCL in the silica networks has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The degree of PCL crystallinity in the PCL/SiO2 hybrid networks reduces with the increase of SiO2 content. PCL is in an amorphous state when the concentration of PCL is lower than 40wt% in the hybrid materials. The melting points of PCL in the networks are lower than that of pure PCL,but they almost have a same value. WAXD results show that when the PCL weight percentage is higher than 40wt% in the hybrid samples,part of PCL can crysatllize and the PCL crystallites are almost in a same size. That means the crystalline movement of PCL molecular chains is strictly confined by the porous gel. The crystalline PCL in the hybrid samples is relatively free from the composition of the materials, because the crystallization temperature and melting point of PCL of the samples are almost equal,and the crystalline PCL of different samples has the same crystalline structure and the same crystallite sizes L-110 and L-200, that means the crystalline part of PCL in the hybrid samples is unperturbed and the porous silica gel gives enough space for PCL to crystallize into the same crystalline structure and the same size crystallites.
Resumo:
The preparation, structure, and electrochemical and electrocatalytical properties of a new polyoxometalate-based organic/inorganic film, composed of cetyl pyridinum 11-molybdovanadoarsenate (CPMVA) molecules, have been studied. Cyclic potential scanning in acetone solution led to a stable CPMVA film formed on a highly oriented pyrolytic graphite (HOPG) surface. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used for characterizing the structure and properties of the CPMVA film. These studies indicated that self-aggregated clusters were formed on a freshly cleaved HOPG surface, while a self-organized monolayer was formed on the precathodized HOPG electrode. The CPMVA film exhibited reversible redox kinetics both in acidic aqueous and in acetone solution, which showed that it could be used as a catalyst even in organic phase. The CPMVA film remained stable even at pH > 7.0, and the pH dependence of the film was much smaller than that of its inorganic film (H4AsMo11VO40) in aqueous solution. The CPMVA film showed strong electrocatalysis on the reduction of bromate, and the catalytic currents were proportional to the square of the concentration of bromate. The new kind of polyoxometalate with good stability may have extensive promise in catalysis.
Resumo:
Communication: Nanostructural hybrid organic-inorganic lanthanide complex films were prepared in situ by use of a novel sol-gel precursor containing pendant triethoxy-silyl and carboxyl groups (see Figure). The resulting transparent and crack-free films gave rise to strong red or green emission, even at low lanthanide ion concentration. Phase separation and lanthanide ion aggregation were controlled at the nanoscale.
Resumo:
In this study, silica-based transparent organic-inorganic hybrid films were prepared by the sol-gel method. Tetraethoxysilane and 3-(trimethoxysilyl)propyl methacrylate were used as the inorganic and organic compounds, respectively. Lanthanide complexes [Eu(phen)(2)]Cl-3 were incorporated into the organically modified silicates (ORMOSIL) and the luminescence properties of the resultant hybrid films (ORMOSIL:[Eu(phen)(2)]Cl-3) were characterized. The relative quantum efficiency was observed higher and the lifetimes were longer in hybrid films than those in pure silica films. Furthermore, thermal stability of hybrid films incorporating various concentration of Eu(III) complex was studied. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ternary europium complexes with thenoyltrifluoroacetone (TTA) and phenanthroline (phen) were incorporated into SiO2/polymer matrix by a sol-gel method. The gels exhibit the characteristic emission bands of europium ion. In addition, Eu3+ presents a longer fluorescence lifetime in gel than in the corresponding pure complex powder. Concentration effects on the luminescence intensity were investigated. The reasons that are responsible for above results are also discussed in the context.
Resumo:
A novel functionalized inorganic-organic hybrid material with cation exchange property was prepared by sol-gel method. The H2O2 biosensor was fabricated by simply dipping the horseradish peroxidase-containing functionalized membrane modified electrode into Meldola's blue (MDB) solution. MDB was adsorbed and firmly immobilized within the membrane. The electrochemical behavior of MDB incorporated in the membrane was more reversible compared with that of the solution species and suitable as mediator for the horseradish peroxidase. The response time was less than 25 s. Linear range is up to 0.6 mM (COH. coeff. 0.9998) with detection Limit of 9 x 10(-7) M. High sensitivity of 75 nA mu M cm(-2) was obtained due to high MDB-loading. The biosensor exhibited a good stability. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This work probes the role of hydrogen bonds (such as O-H ... O and N-H ... O) in some inorganic nonlinear optical (NLO) crystals, such as HIO3, NH4H2PO4 (ADP), K[B5O6(OH)(4)] . 2H(2)O (KB5) and K2La(NO3)(5) . 2H(2)O (KLN), from the chemical bond standpoint. Second order NLO behaviors of these four typical inorganic crystals have been quantitatively studied, results show hydrogen bonds play a very important role in NLO contributions to the total nonlinearity. Conclusions derived here concerning the effect of hydrogen bonds on optical nonlinearities of inorganic crystals have important implications with regard to the utilization of hydrogen bonds in the structural design of inorganic NLO crystals. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The inorganic/polymer hybrid films with good luminescent properties have been obtained by the sol - gel process via incorporating the polymer component doped with rare earth complexes. These films exhibit good toughness and transparency. Their fluorescence spectra and lifetimes indicate that they all have the characteristic luminescence of the central rare earth ions. The lifetimes of these films are longer than those of pure complexes. TEM have showed that the rare earth complexes are dispersed homogeneously in SiO2/PVB interpenetratiny networks, and the dispersed size is between 20 and 30 nn.
Resumo:
Organic-inorganic radical salt (DBTTF)(6)PMo12O40 . 2H(2)O was synthesized by electrocrystallization and characterized by IR spectrum, electronic spectrum and ESR technology, Its magnetic property, conductivity and crystal structure were determined. The title compound crystallized in a triclinic system with P1 space group, a = 1.378 7(7), b = 1.420 4 (2), c = 1.570 2(2) nm, alpha = 104.57(1)degrees, beta = 103.41(2)degrees, gamma = 95.80(2)degrees, V = 2.853(2) nm(3) Z = 1 and a final R = 0.072 7.
Resumo:
The structural relaxation process of an inorganic glass (Li(2)O2SiO(2)) has been studied by differential scanning calorimetry. The sample is subjected to different thermal ageing histories with isothermal stages at an ageing temperature of T-g - 30 degrees C for different ageing times and at an ageing time of 16 h for different ageing temperatures. A four-parameter Tool-Narayanaswamy-Moynihan (TNM) model, is applied to simulate the normalized specific-heat curves measured. The ageing-temperature and ageing-time dependence of the structural relaxation parameters in the TNM model is obtained. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
A new type of sol-gel organic-inorganic hybrid material was developed and used for the production of biosensors. This material is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. It prevents the cracking of conventional sol-gel-derived glasses and eliminates the swelling of the hydrogel. The optimum composition of the hybrid material was first examined, and then glucose oxidase was immobilized in this matrix to demonstrate its application. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The biosensor exhibited a series of good properties: high sensitivity (600 nA mmol(-1)L(-1)), short response time (11 s) and remarkable long-term stability in storage (at least 5 months). In addition, the characteristics of the second-generation biosensor with the use of tetrathiafulvalene as a mediator mere discussed.
Resumo:
The main characteristics of structural relaxation and the associated Tool-Narayanaswamy-Moynihan (TNM) model are thoroughly introduced, The structural relaxation of an inorganic glass (Li2O . 2SiO(2)) at different aging temperatures and aging times is found to be well modeled by the TNM model.
Resumo:
The structural relaxation process of an inorganic glass (Li2O . 2SiO(2)) at an ageing temperature of 703 K for an ageing time of 1 h has been studied by differential scanning calorimetry. A four-parameter model-the Tool-Narayanaswamy-Moynihan (TNM)-model was applied to simulate the normalized specific heat curve measured. A set of optimized parameters, Delta h*/R,beta,InA, and x was obtained. Then the effects of variation of each adjustable parameter on the calculated specific heat were summarized. (C) 1997 Elsevier Science S.A.