169 resultados para high velocity power training


Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍了国内外超高压输电线路巡检机器人的研究现状,分析了几种典型的巡检机器人传动原理、机械结构的特点,详细探讨了巡检机器人移动、越障的运动机理和机构形式。最后总结了巡检机器人移动越障机构的难点,展望了巡检机器人的发展趋势。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

给出了一种超高压输电线路巡检机器人控制系统的设计与实现方法.根据机器人的作业任务,提出了基于传感器信息、约束信息以及动作反馈信息作为输入,产生式系统作为动作输出的越障控制方式.仿真结果表明此方法对于机器人的越障过程是有效的.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PSD是一种高分辨率、实时性好的光电位置敏感器件,因而具有广泛应用的前景.但在光照度变化条件下,输出信号存在非线性飘移,因而影响了作为位置检测传感器的检测精度,尤其在3D测量时适用性受到了限制.针对这个问题,提出了一种PSD位置传感器的非线性误差补偿方法.该方法针对目标的空间距离变化所产生的PSD输出非线性飘移,采用归一化模型进行误差修正,很大程度上改进了PSD的输出一致性,使基于PSD的3D测量系统性能得以提高.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared with the conventional P wave, multi-component seismic data can markedly provide more information, thus improve the quality of reservoir evaluation like formation evaluation etc. With PS wave, better imaging result can be obtained especially in areas involved with gas chimney and high velocity formation. However, the signal-to-noise of multi-component seismic data is normally lower than that of the conventional P wave seismic data, while the frequency range of converted wave is always close to that of the surface wave which adds to the difficulty of removing surface wave. To realize common reflection point data stacking from extracted common conversion point data is a hard nut to crack. The s wave static correction of common receiver point PS wave data is not easy neither. In a word, the processing of multi-component seismic data is more complicated than P wave data. This paper shows some work that has been done, addressing those problems mentioned above. (1) Based on the AVO feature of converted wave, this paper has realized the velocity spectrum of converted waves by using Sarkar’s generalized semblance method taking into account of AVO factor in velocity analysis. (2)We achieve a method of smoothly offset division normal method.Firstly we scan the stacking velocities in different offset divisions for a t0, secondly obtain some hyperbolas using these stacking velocities, then get the travel time for every trace using these hyperbolas; in the end we interpolate the normal move out between two t0 for every trace. (3) Here realize a method of stepwise offset division normal moveout.It is similar to the method of smoothly offset division normal moveout.The main difference is using quadratic curve, sixth order curve or fraction curve to fit these hyperbolas. (4)In this paper, 4 types of travel time versus distance functions in inhomogeneous media whose velocity or slowness varies with depth and vertical travel time have been discussed and used to approximate reflection travel time. The errors of ray path and travel time based on those functions in four layered models were analyzed, and it has shown that effective results of NMO in synthetic or real data can be obtained. (5) The velocity model of converted PS-wave can be considered as that of P -wave based on the ghost source theory, thus the converted wave travel time can be approximated by calculation from 4 equivalent velocity functions: velocity or slowness vary linearly with depth or vertical travel time. Then combining with P wave velocity analysis, the converted wave data can be corrected directly to the P-wave vertical travel time. The improvements were shown in Normal Move out of converted waves with numerical examples and real data. (6) This paper introduces the methods to compute conversion point location in vertical inhomogeneous media based on linear functions of velocity or slowness versus depth or vertical travel time, and introduce three ways to choose appropriate equivalent velocity methods, which are velocity fitting, travel time approximation and semblance coefficient methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on field survey, laboratory testing and numerical modeling, engineering characteristics of undisturbed loess and the mechanism of long-runout loess landslides caused by underground water level rise, as well as the formation conditions and spatial distribution of landslides, are systematically studied and analyzed. Loess landslides at south Plateau of Jingyang County are mainly classified as flowslide, slide and fall. Flowslide is the main type characteristic of high velocity, long runout and multi-stages. The steep relief composed of loose structured loess-old aged soil serials and the rise of groundwater table are the predominant conditions for landslides in the study area. To study loess mechanic poperties and loess landslides mechanisims, isotropically and anisotropically consolidated undrained compression(ICU and ACU) tests and constant-deviator-drained compression (CQD) tests were carried out on undisturbed samples. The results of undrained compression tests performed at the in-situ stress level show that the soils are of consistently strain-softening in the stress-strain relations and cause high excess pore pressure. The steady-state line and the potential region of instability are obtained from ICU and ACU test results. A necessary condition for liquefaction is that the soil state initially lies in or is brought into the potential instability region. In addition, a strong strain-softening model is also formed. CQD tests demonstrate that the mobilized friction angle is far less than the steady-state angle and that the soil experiences undrained contractive failure suddenly at very small strains when its stress path during drained loading tries to cross the potential instability region,thus validates the proposed instability region. Based on the location of the region of potential instability and the stress state of slope soil, a method of static liquefaction analysis is proposed for loess landslides caused by rise in groundwater table. Compared with other liquefaction analysis methods, this method overcomes the limitations inherent in conventional slope stability method and undrained brittleness index method. Triaxial tests composed of constant water content (CW) and wetting tests at constant deviator stress are performed on undisturbed unsaturated samples. The stress-strain relation of CW tests takes on strain-hardening behavior; The results of wetting tests at constant deviator stress designed to study the mechanics of failure of unsaturated loess caused by an increase in the degree of saturation (wetting) shows that a contractive failure occurs in the undisturbed samples. On the basis of the above triaxial test results, the initiation of static liquefaction is presented for long-runout loess landslides caused by rise in groundwater table, that is, the loess slope soil gradually transfer from unsaturated to saturated state under the infiltration of irrigation. A contractive failure occurs in the local region at very small strain by increasing the pore-water pressure at constant deviator stresses under drained conditons. It is the contractive failrue resulting from rise of pore pressure that leads to high excess pore pressure in the neighbour soil which reduces shear resistance of soil. The neighbour soils also fail due to the rapid increase in pore-water pressure. Thus a connected failure surface is developed quickly and a flowslide occurs. Based on the saturated-unsaturated seepage theory, transient seepage is computed using the finite element method on loess slope under groundwater table rise. Pore-water pressure distribution for every time step after irrigation are obtained. The phreatic surface in the slope increases with the groundwater table. Pore-water pressure distribution within 8m above the phreatic surface changes very quickly,but the water content and pore water pressure in the region ranging from 8m above the phreatic surface up to ground surface is almost not affected and the matric suction usually is kept at 100~120 kPa. Based on the results of laboratory tests and seepage flow analysis, the development process of loess landslide is modeled considering groundwater table rise. The shearing plastic zone first occurs at the slope toe where the soil is soaked for long term during rise in groundwater table. As irrigation continues, the shearing plastic zone gradually extends to the interior soils, with the results that the tensile plastic zone occurs at the slope crown. As time goes on, both the shearing plastic zone and tensile plastic zone continue to extend. Then a connected plastic zone is formed and fowslide occurs. In comparision to laboratory test results, the results of numerical simulation quite well verify the presented mechanism of static liquefaction of long-runout loess landslides caused by rise in groundwater table.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the data of wind from 11 meteorological observation stations in recent 40 years, the paper analyzed the temporal and spatial distribution characteristics of resultant drift potential in the Badain Jaran Desert. The 84 sand samples were collected and analysed from three compound crescentic dunes developped on southeast part of The Badain Jaran Desert. Through the statistics and computation of wind data and the analysis of Grain Size over compound crescentic dunes in The Badain Jaran Desert, this paper analyzed the characteristics of the blown sand activities in in this area. The following viewpoints were obtained: 1 Most parts of The Badain Jaran Desert are dominated by northwest wind and sub-dominated by west wind, while prevailing wind in southeast part of The Badain Jaran Desert is southeast, different froms other places. 2 The Badain Jaran Desert is strongly zoned from its surounding meteorological observation stations. It has impressively high DP and RDP value. Except for Ding Xin Station in medium wind power environment, the left stations are all belongs to high wind-power districts. 3 From the seventies till now, the value of DP and RDP in The Badain Jaran Desert shows a decending trend except for the RDP value of Guai Zihu Station in the north. This trend indicates that the wind power for the moment of The Badain Jaran Desert is far lower than it in the seventies. 4 Adopting sand rose map for classification of wind environments in defferent parts of The Badain Jaran Desert, Ejinaqi is Narrow unimodal wind regimes, Ding xin, Bayinmaodao and Ayouqi districts obtuse bimodal and Guaizihu complex. 5 Resultant drift directions in most parts of the Badain Jaran desert are southeast, which indicates annual net sand in these areas drifted from the northwest to the southeast of the desert, which consists with the analysis results of grain size of predecessors. RDD in Ayouqi staion shows the net sand drifted from the southeast to the northwest in the recent 40 years, which may attribute to the reason that, the Badain Jaran desert lies in the zone influenced by both northwest and southeast wind, the southeast monsoon was strengthened and northwest wind became weaker than a former time. So, if sand mareria is sufficient, there are two different drift directions, namely two sorts of sand source, existed in Badain Jaran desert at least. 6 Based on analysis results of meteorologic data and grain size, blown sand activities is that, in most parts of Badain Jaran desert in the past 40 years, northwest wind transported net sand from the northwest part to the southeast part of The Badain Jaran Desert.And besides this, analysis of collected sand samples also shows that, in the southeast part of Badain Jaran desert, grain size do fined from southeast to northwest. Combining results of meteorologic data in the southeast part, it can infered that southeast monsoon took blown sand to the inner desert from its southeast part.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our study deals with the high resolution body wave tomography in North china and adjacent areas(30°N-43°N,100°E-130°E), where earthquakes occurred many times in history and has a very complicated geological structure. 6870 events recorded at 273 digital seismic stations from CDSN during 1996-2002 and stations settled by Seislab of IGCAS in Bohai Bay area, including 1382 local earthquakes and 5488 teleseismic earthquakes are used in this study. In the data we used, the average number of received stations is greater than 5, the error of picking up direct arrival time is 0.1-0.5s. Before the inversion, we use Checkerboard method to confirm the reliability of result of Local events; use Restoring Resolution Test to confirm the reliability of result of teleseismic events. We also analyzed the effect of different parameters in the inversion. Based the analysis above, the model used in this paper is divided into small blocks with a dimension of 0.33°in the latitude and longitude directions and 5km、15km、30km in depth, and initial velocity model. Using pseudobending method to calculate the ray traveling path, LSQR algorithm to inverse, finally, we got the body velocity images below 25km and above 480km in this area using Joint- inversion with local events and teleseismic events. We made the conclusion at last: (1)at top zone of the south of Sichuan Basin , there exits low velocity anomalies, below 40km is the high velocity zone extend to 300km; (2) Above the 40km of Ordos block exits low velocity zone, while below 40km until 240km, the high velocity anomalies are interlaced by low velocity anomalies. Below 300km, the anomalies are unclear any more; (3) On the whole, the velocity structure below 400km on the mantle transition zone of Eastern China area shows its changes from low velocity to high velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both the global and regional P wave tomographic studies have revealed significant deep structural heterogeneities in subduction zone regions. In particular, low-velocity anomalies have been observed beneath the descending high-velocity slabs in a number of subduction zones. The limited resolution at large depths and possible trade-off between the high and low velocities, however, make it difficult to substantiate this feature and evaluate the vertical extent of the low-velocity structure. From broadband waveform modeling of triplicated phases near the 660-km discontinuity for three deep events, we constrained both the P and SH wave velocity structures around the base of the upper mantle in northeast Asia. For the two events beneath the southern Kurile, the rays traveled through the lowermost transition zone and uppermost lower mantle under the descending Pacific slab. Our preferred models consistently suggest normal-to-lower P and significantly low SH velocities above and below the 660-km discontinuity extending to about 760-km depth compared with the global IASP91 model, corroborating previous observations for a slow structure underneath the slab. In contrast, both high P and SH velocity anomalies are shown in our preferred models for the Japan subduction zone region, likely reflecting the structural feature of a slab stagnant above the 660-km discontinuity. The velocity jumps across the 660-km discontinuity were found to be on average 4.5% and 7% for P and S waves under the south Kurile, and 3% and 6% under the Japan subduction zone. The respective velocity contrasts in the two regions are consistent with mineralogical models for colder slab interior and hotter under-slab areas. Based on mineral physics data, the depth-averaged ~1.5% P and ~2.5% SH velocity differences in the depth range of 560-760 km between the two regions could be primarily explained by a 350~450K temperature variation, although the presence of about 0.5wt%~1wt% water might also contribute to the subtle velocity variations near the base of the transition zone in the southern Kurile. From our modeling results, we speculate that the slow structure in the southern Kurile may be correlated to the low velocity zone observed previously around the 410-km discontinuity under Northern Honshu. Both are probably associated with a thermal anomaly rooted in the lower mantle beneath the subduction zone in northeast Asia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crosshole Seismic tomography has been broadly studied and applied in the fields of resource exploration and engineering exploration because of its special observing manner and better resolution than normal seismic exploration. This thesis will state the theory and method of Crosshole Seismic tomography. Basing on the previous studies,the thesis studied the initial velocity model,ray-tracing method, and developed the three-dimension tomography software. All the cells that a ray passes through are of the same velocities if the paths from transmitters to receivers are straight. The cells that the each ray passes through are recorded, and rays that pass through each cell are calculated. The ray average velocity which passes through a cell is set as the cell velocity. Analogously we can make a initial node velocity model because the velocity sum is calculated on the all cells which own to a certain node, and the cell number is summed about each nodes,the ratio of the velocity sum to the all cells number is set as the node velocity. The inversion result from the initial node velocity model is better than that of the average velocity model. Ray-bending and Shortest Path for Rays (SPR) have shortcomings and limitations respectively. Using crooked rays obtained from SPR rather than straight lines as the starting point can not only avoid ray bending converging to the local minimum travel time path, but also settle the no smooth ray problem obtained by SPR. The hybrid method costs much computation time, which is roughly equal to the time that SPR expends. The Delphi development tool based on the Object Pascal language standard has an advantage of object-oriented. TDTOM (Three Dimensions Tomography) was developed by using Delphi from the DOS version. Improvement on the part of inversion was made, which bring faster convergence velocity. TDTOM can be used to do velocity tomography from the first arrival travel time of the seismic wave, and it has the good qualities of friendly user interface and convenient operation. TDTOM is used to reconstruct the velocity image for a set of crosshole data from Karamay Oil Field. The geological explanation is then given by comparing the inversion effects of different ray-tracing methods. High velocity zones mean the cover of oil reservoir, and low velocity zones correspond to the reservoir or the steam flooding layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years seismic tomography has become a powerful tool for studying the three-dimensional crust and mantle structure. In this study, we collected a large number of regional and teleseismic travel-time data and used seismic tomography method to study the relationship between earthquake occurrence and crustal heterogeneity for the 1992 Landers earthquake, heterogeneity and evolution of lithosphere under North China Craton and Southern California, and deep structure and origin of the Changbai intraplate volcano in Northeast China. Our results show a correlation between the seismic rupture zone and crustal heterogeneity. The distribution of the Landers aftershocks is cluster-like and separated or terminated in areas where low-velocity anomalies exist.Most of the large earthquakes with magnitudes >4.0 occurred in or around areas with high P-wave velocity.The possibility is that high-velocity areas are brittle and strong parts which can sustain seismogenic stress,and so can generate earthquakes. Our tomographic images show a very heterogeneous structure in the crust and upper mantle beneath Southern California. Three major anomalies in the upper mantle are revealed clearly beneath the southern Sierra Nevada, Transverse Ranges and Salton Trough. We consider that the high-velocity anomaly beneath the Transverse Ranges was formed through asymmetrical two-side convergence of subcrustal lithosphere and sinking to asthenosphere. Formation of the dense crust root and “drip structure” caused the high-velocity anomaly under the southern Sierra Nevada. The Salton Trough low is the response to the lithospheric extension when the Pacific plate was rifted away from the North American Plate. The tomograpic images beneath the North China Craton show that there exist different lithospheric structures under the different blocks. Complex, prominent low-velocity and high-velocity anomalies are imaged beneath the North China Basin, Trans-North China Orogen (TNCO), and Ordos Block which correspond to rifted, orogenic and cratonic lithospheres, respectively. The thickness of the three-type lithospheres is about 70, 90 and >250 km, respectively. Our results suggest that lithospheric thinning under the eastern part of North China Craton is due to long-term replacement and chemical and thermal erosion of the ancient lithosphere by the hot asthenosphere. The remains of ancient lithosphere exist either in the present upper mantle or have sunk into the mantle transition zone. Our tomographic result of the Changbai volcanic area suggests that the origin of the Changbai volcano is related to the deep dehydration of the subducted Pacific slab and corner flow in the big mantle wedge (BMW) above the stagnant Pacific slab.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3-D velocity images of the crest and upper mantle beneath the region of 112° -124°E, 28°-39°N including the Dabie-Sulu orogenic belt are reconstructed by using 36405 P-wave arrivals of 3437 regional and 670 distant earthquakes during the period from 1981 to 1996, and gridding the area of 0.5° * 0.5°. The results of tomography demonstrate that: 1. The results of tomographic imaging show a broad heterogeneity in P wave velocity structure for the lithosphere beneath the Dabie-Sulu orogenic belt. 2. In the Dabie orogenic belt, the velocity patterns in the crust are different among various tectonic units. The Dabie and Qinling orogenic belts are remarkable in the tomographic images, and in mm the Hongan and Dabie blocks in the Dabie orogenic belt are also imaged very distinguishably. 3. A velocity (about 5.9~6.0 km/s) layer exists in the Dabie block at depth between 15~25 km, which is coincident with the low-resistance layer at the depth of 12-23 km, being inferred to be the tectonic detachment zone and suggesting that the extension detachment structure was formed in the middle crust. Beneath the southern and northerm Dabie tectonic units, the north-dipping high-velocity (at level of 6.5 ~ 6.6 km/s) block was developed in the crust, which might be correlated with the UHP rockswith low content of the meta-ultramafic rocks. This result is in agreement with the geological observation on the surface. 4. The velocity image at 40 km depth reveals the features at the top of mantle and the configuration of the Moho discontinuity. The depth of the Moho changes slightly along the trend of the orogenic belt. It in Hongan block is less than 40 km, but it is different in the western and eastern parts of the Dabie block, the former is more than 40 km, and the latter less than or equal to 40 km. The remnant of the mountain root exists between the Shangcheng-Macheng fault and the line of Huoshan-Yuexi-Yingshan in the Dabie orogenic belt, and beneath the southern and northern Dabie tectonic units. However, the thickness of the Moho is about 40 km and there is no obvious changes, which suggest that the Dabie orogenic belt has been experienced quite in the gravity equilibration. The Moho's depth in the Sulu is less than 40 km. 5. There is a dipping slab-like high-velocity body in the uppermost mantle. It is sandwiched by slow velocities and exists beneath the Dabie-Sulu orogenic belt in the range of depths between the Moho discontinuity and 110 km at least. This high-velocity body outlines a picture of the slab interpreted as the remnant of the Triassic subducted YZ. 6. The Sulu orogenic belt displays "crocodilian" velocity structure, the upper crust of the Yangtze thrusted over the Huabei crest, and the Huabei crust indented into the Yangtze crust, where the ancient subduction zone of the Yangtze lithosphere located. Based on the previous geological data, this structure is not related with the collision between the Yangtze and Sino-Korean Blocks, but caused by the sinistral offset of the Tan-Lu Fault. Studied on the velocity structure of the eastern Huabei lithosphere indicates: 1. The 'present-day' lithosphere of the eastern Huabei is between 40-100 km thick with greatly thinned lithosphere around the Bohai Sea. Generally, thickness of the lithosphere in this region decreased eastwards. 2. The attenuation of the lithosphere is attributed to the strongly uplift of the asthenosphere. In the area between the Taihang Mountains and the Tan-Lu Fault, there is a 'lever' with red low velocity belt, it is clearly defined, transverse continuity, depth between 100-150 km, local variations visible, and an upwards trend towards the Bohai Sea. Generally, the velocity structure in the mantle beneath the lithosphere displays irregular column-shape consisting of alternating high and low velocities, and when cold high velocity ancient lithosphere connects with the hot low velocity mantle materials forming precipitous compact structure. More heat pathways from the mantle occur towards the Tan-Lu Fault. 3. The strongly irregular characteristics of the contact between the asthenosphere and the lithosphere is induced by the long-term hot, chemical erosion and alteration on the contact. 4. There are still preserved high velocity lithosphedc root beneath Huabei with 'block-shape' distribution and surrounded by hot materials. Results of our studies indicate that the evolution models of the eastern China mantle are characterized by the direct contact between the uplifted lithosphere and the Huabei Craton accompanying the upwelling of the deep mantle materials. At the contact betwen the lithosphere and the asthenosphere, the upwelled mantle materials replaced and altered the lower lithosphere forming the metasome through the hot and chemical modifications impacted on the Craton lithosphere, and changed it into the lithosphere gradually, resulting in the lithospheric thinning. Thus, the lithospheric thinning is the result of the upwelling of the asthenosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a study on resonance enhanced multiphoton ionization photoelectron spectroscopy (REMPI-PES) involving the fast predissociative (A) over tilde state of ammonia, using nano- and femtosecond lasers. The multiphoton scheme involves (1 + 1), (2 + 2), (2 + 2) + 1 and (2 + 2) + 2 photon processes. We have found a progression of stretching vibrations nu(1) in the PE spectrum when pumping NH3 (A) over tilde upsilon(2) = 0, 1 and 3 as intermediate states. The stretching vibration intensity distributions in the photoelectron spectrum are calculated by using the Chebychev method of the wavepacket propagation. The femtosecond spectrum shows a similar feature to the nanosecond spectrum. However, high laser power also causes band broadening and shifting effect as well as above threshold multiphoton ionization.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To overcome the difficulty in the DNS of compressible turbulence at high turbulent Mach number, a new difference scheme called GVC8 is developed. We have succeeded in the direct numerical simulation of decaying compressible turbulence up to turbulent Mach number 0.95. The statistical quantities thus obtained at lower turbulent Mach number agree well with those from previous authors with the same initial conditions, but they are limited to simulate at lower turbulent Mach numbers due to the so-called start-up problem. The energy spectrum and coherent structure of compressible turbulent flow are analysed. The scaling law of compressible turbulence is studied. The computed results indicate that the extended self-similarity holds in decaying compressible turbulence despite the occurrence of shocklets, and compressibility has little effects on relative scaling exponents when turbulent Mach number is not very high.