93 resultados para heterogeneous computation
Resumo:
Steady-state voltammograms at a microdisk electrode are used to measure the diffusion coefficient (D) and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG.MClO(4). The diffusion coefficient and standard heterogeneous rate constant of ferrocene are both smaller in polymer solvents than in monomeric solvents. The D and k(s) of ferrocene have been estimated in PEG containing different concentrations and cations of supporting electrolytes, and the dependencies of D and k(s) on temperature have been observed. These results show that the D and k(s) of ferrocene increase with increasing temperature in polyelectrolyte, and with increasing cation radius of supporting electrolyte, eg D and k(s) increase in the order Bu(4)NClO(4) > NaClO4 > LiClO4. On the other hand, D and k(s) increase with decreasing concentration of supporting electrolyte. The dependence of the half-wave potential (E(1/2)) on the concentration of the supporting electrolyte is also observed. E(1/2) shifts in the negative direction as the concentration of supporting electrolyte increases. (C) 1997 Elsevier Science Ltd.
Resumo:
Radiation-induced crystallization of polyamide-1010 (PA1010) or nylon-1010 containing heterogeneous nuclei (neodymium oxide, Nd2O3) is discussed in this paper by Wide Angle X-ray Diffraction (WAXD) and Differential Scanning Calorimetry (DSC). The results show that at low dosage the crystallinities of the irradiated specimens increase, while crystallite size (L(hkl)) decreases, indicating that some new crystallites are produced in the course of irradiation. The new centers were brought about in the fold surface of the lamellae. Copyright (C) 1997 Elsevier Science Ltd
Resumo:
This paper deals with radiation effects on PA1010 containing heterogeneous nuclei (Nd2O3). With the help of DSC, WAXD and ESR techniques, the change in the crystallinity and the perfection of the crystal of irradiated PA1010 containing heterogeneous nuclei were studied. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Irradiated polyamide-1010 (PA1010) and PA1010 containing 0.5% (wt) heterogeneous nuclei were studied by ESR, WAXD, DSC and the determination of gel fractions. The fold surface of the lamellae plays an important role in the effects of radiation on crystalline PA1010. The results show that the direct radiation effects on both samples vary, while after being heated to 220 degrees C, the final radiation effects are identical, regardless of the difference in the amount of the fold surface of the lamellae. The post-radiation effects result predominantly from the fold surface.
Resumo:
The prediction, based on unsteady diffusion kinetics, of the enhancement of reactivity and incorporation of 1-hexadecene in its copolymerization with propylene on adding a small amount of ethylene (increase from 5,2 mol-% to 10,8 mol-% when 2% of ethylene was added, and to 16,1 mol-% when 5% was added) was verified in the terpolymerization of propylene/1-hexadecene/ethylene on a commercial Solvay-type delta-TiCl3 catalyst. The catalyst efficiency was thus also increased. These augmentations originate from the increase in diffusion coefficient of 1-hexadecene at the catalyst surface when the PP crystallinity decreases on introduction of ethylene. Calculation based on unsteady diffusion kinetics showed that the order of diffusion coefficients ethylene > propylene > 1-hexadecene is reversed as the monomer concentration increases when the monomers are not at their equilibrium concentration. Sequence distribution as determined by means of C-13 NMR revealed a tendency of blocky structure rather than a Bernoullian one. The terpolymer compositions obtained by means of an IR method developed in this work conform rather well with the NMR results. Results in this work not only support the unsteady diffusion kinetics but also provide a new route to prepare olefinic copolymer rubbers with heterogeneous titanium catalysts.
Resumo:
The rapid scan spectrometer was used to determine the heterogeneous electron transfer rate parameters for the oxidation of Biliverdin in DMF by single potential step thin layer spectroelectrochemical techniques and yielded an average formal heterogeneous electron transfer rate constant K(s, h)0' = 2.45 (+/-0.12) x 10(-4) cm s-1, electrochemical transfer coefficient alpha = 0.694+/-0.008. The oxidation process of Biliverdin was also studied and the formal potential E0 = 0.637 V (vs. Ag/AgCl) was obtained.
Resumo:
Unsteady diffusion kinetic, recently advanced by this laboratory, is applied to the examination of some polymerization and molecular chain structure problems. Hitherto deemed "anomalous" phenomena, such as the faster rate of copolymerization of ethylene/alpha-olefin than the homopolymerization of ethylene and the enrichment in the incorporation of a higher alpha-olefin in its copolymerization with ethylene by a lower alpha-olefin, are reasonably explained by unsteady diffusion of monomers. Molecular chain structure of copolymers, such as compositional heterogeneity and its dependence on comonomer incorporation originates from the difference in diffusion coefficients of the monomers. A copolymer composition equation taking into consideration the unsteady diffusion was developed. In cases where simulated curves were compared with experimental curves, good agreements were found.
Resumo:
Seismic Numerical Modeling is one of bases of the Exploratory Seismology and Academic Seismology, also is a research field in great demand. Essence of seismic numerical modeling is to assume that structure and parameters of the underground media model are known, simulate the wave-field and calculate the numerical seismic record that should be observed. Seismic numerical modeling is not only a means to know the seismic wave-field in complex inhomogeneous media, but also a test to the application effect by all kinds of methods. There are many seismic numerical modeling methods, each method has its own merits and drawbacks. During the forward modeling, the computation precision and the efficiency are two pivotal questions to evaluate the validity and superiority of the method. The target of my dissertation is to find a new method to possibly improve the computation precision and efficiency, and apply the new forward method to modeling the wave-field in the complex inhomogeneous media. Convolutional Forsyte polynomial differentiator (CFPD) approach developed in this dissertation is robust and efficient, it shares some of the advantages of the high precision of generalized orthogonal polynomial and the high speed of the short operator finite-difference. By adjusting the operator length and optimizing the operator coefficient, the method can involve whole and local information of the wave-field. One of main tasks of the dissertation is to develop a creative, generalized and high precision method. The author introduce convolutional Forsyte polynomial differentiator to calculate the spatial derivative of seismic wave equation, and apply the time staggered grid finite-difference which can better meet the high precision of the convolutional differentiator to substitute the conventional finite-difference to calculate the time derivative of seismic wave equation, then creating a new forward method to modeling the wave-field in complex inhomogeneous media. Comparing with Fourier pseudo-spectral method, Chebyshev pseudo-spectral method, staggered- grid finite difference method and finite element method, convolutional Forsyte polynomial differentiator (CFPD) method has many advantages: 1. Comparing with Fourier pseudo-spectral method. Fourier pseudo-spectral method (FPS) is a local operator, its results have Gibbs effects when the media parameters change, then arose great errors. Therefore, Fourier pseudo-spectral method can not deal with special complex and random heterogeneous media. But convolutional Forsyte polynomial differentiator method can cover global and local information. So for complex inhomogeneous media, CFPD is more efficient. 2. Comparing with staggered-grid high-order finite-difference method, CFPD takes less dots than FD at single wave length, and the number does not increase with the widening of the studying area. 3. Comparing with Chebyshev pseudo-spectral method (CPS). The calculation region of Chebyshev pseudo-spectral method is fixed in , under the condition of unchangeable precision, the augmentation of calculation is unacceptable. Thus Chebyshev pseudo-spectral method is inapplicable to large area. CFPD method is more applicable to large area. 4. Comparing with finite element method (FE), CFPD can use lager grids. The other task of this dissertation is to study 2.5 dimension (2.5D) seismic wave-field. The author reviews the development and present situation of 2.5D problem, expatiates the essentiality of studying the 2.5D problem, apply CFPD method to simulate the seismic wave-field in 2.5D inhomogeneous media. The results indicate that 2.5D numerical modeling is efficient to simulate one of the sections of 3D media, 2.5D calculation is much less time-consuming than 3D calculation, and the wave dispersion of 2.5D modeling is obviously less than that of 3D modeling. Question on applying time staggered-grid convolutional differentiator based on CFPD to modeling 2.5D complex inhomogeneous media was not studied by any geophysicists before, it is a fire-new creation absolutely. The theory and practices prove that the new method can efficiently model the seismic wave-field in complex media. Proposing and developing this new method can provide more choices to study the seismic wave-field modeling, seismic wave migration, seismic inversion, and seismic wave imaging.
Resumo:
This dissertation presents a series of irregular-grid based numerical technique for modeling seismic wave propagation in heterogeneous media. The study involves the generation of the irregular numerical mesh corresponding to the irregular grid scheme, the discretized version of motion equations under the unstructured mesh, and irregular-grid absorbing boundary conditions. The resulting numerical technique has been used in generating the synthetic data sets on the realistic complex geologic models that can examine the migration schemes. The motion equation discretization and modeling are based on Grid Method. The key idea is to use the integral equilibrium principle to replace the operator at each grid in Finite Difference scheme and variational formulation in Finite Element Method. The irregular grids of complex geologic model is generated by the Paving Method, which allow varying grid spacing according to meshing constraints. The grids have great quality at domain boundaries and contain equal quantities of nodes at interfaces, which avoids the interpolation of parameters and variables. The irregular grid absorbing boundary conditions is developed by extending the Perfectly Matched Layer method to the rotated local coordinates. The splitted PML equations of the first-order system is derived by using integral equilibrium principle. The proposed scheme can build PML boundary of arbitrary geometry in the computational domain, avoiding the special treatment at corners in a standard PML method and saving considerable memory and computation cost. The numerical implementation demonstrates the desired qualities of irregular grid based modeling technique. In particular, (1) smaller memory requirements and computational time are needed by changing the grid spacing according to local velocity; (2) Arbitrary surfaces and interface topographies are described accurately, thus removing the artificial reflection resulting from the stair approximation of the curved or dipping interfaces; (3) computational domain is significantly reduced by flexibly building the curved artificial boundaries using the irregular-grid absorbing boundary conditions. The proposed irregular grid approach is apply to reverse time migration as the extrapolation algorithm. It can discretize the smoothed velocity model by irregular grid of variable scale, which contributes to reduce the computation cost. The topography. It can also handle data set of arbitrary topography and no field correction is needed.
Resumo:
The enantioselective hydrogenation of ethyl pyruvate on the cinchonidine modified Pt/Al2O3 catalyst was investigated using a high-pressure reaction system with a fixed-bed reactor for the purpose to produce the,chiral product without separating the catalyst from the reaction system. The reaction was also investigated in a batch reactor for comparison. About 60% e. e. and 90% e. e. were obtained with the fixed-bed reactor and the batch reactor respectively, demonstrating the possibility for the heterogeneous asymmetric hydrogenation in the fixed-bed reactor. Some adsorbed chiral modifier, cinchonidine, can be slowly removed from the surface of Pt/Al2O3 under the continuous flow reaction, as a result, the e, e, values drops with the reaction time in the fixed-bed reactor. The enantio-selectivity is higher in the fixed-bed reactor, but lower in the batch reactor when ethanol was used as solvent than that when acetic acid as solvent. CO was used as molecular probe to characterize the adsorption of cinchonidine an the catalyst surface by IR spectroscopy, A red shift observed in IR spectra of coadsorbed CO with cinchonidine suggests that the cinchonidine adsorption is mainly through the pi -interaction with platinum surface and donating electron to the platinum surface.
Resumo:
A novel ligand modified heterogeneous catalyst has been developed for hydroformylation of propylene, which showed excellent activity, selectivity and stability and need not be separated from the product after reaction in a fixed-bed reactor. The coordination bonds between triphenyl phosphine (PPh3) and Rh/SiO2 were confirmed by means of thermogravimetric (TG), solid-state P-31 NMR, XPS and FT-IR. Two types of active species for hydroformylation were formed, which were proved by in situ FT-IR techniques. The problem of metal leaching was greatly reduced by directly fastening Rh particles on the support, and the active Rh species that was responsible for the outstanding performance of propylene hydroformylation was tightly bound by the very strong metal-metal bonds. No sign of deactivation was observed over a period of more than 1000 h on the condition that PPh3 was added at 300-350 h of time on stream. (c) 2005 Elsevier B.V. All rights reserved.