126 resultados para food dye
Resumo:
A new metal-free organic sensitizer (see figure) for high-performance and applicable dye-sensitized solar cells is presented. In combination with a solvent-free ionic liquid electrolyte, a similar to 7% cell made with this sensitizer shows all excellent stability measured under thermal and light-soaking dual stress. For the first time a 4.8% efficiency is reached for all-solid-state dye-sensitized solar cells based oil all organic dye.
Resumo:
Random multimode lasers are achieved in 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene thin films by introducing silicon dioxide (SiO2) nanoparticles as scatterers. The devices emit a resonance multimode peak at a center wavelength of 640 nm with a mode linewidth less than 0.87 nm. The threshold excitation intensity is as low as 0.25 mJ pulse(-1) cm(-2). It can be seen that the microscopic random resonance cavities can be formed by multiple scattering of SiO2 nanoparticles.
Resumo:
White light emission from amplified spontaneous emission (ASE) was realized by optically pumping fluorescent dye 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped semiconducting poly(9,9-dioctylfluorene) (PFO) polymer thin films. Two individual ASE peaks originating from DCJTB and PFO were observed by carefully controlling the DCJTB concentration in PFO. The studies of the ASE characteristics of DCJTB:PFO thin films lead to the conclusion that the DCJTB:PFO system with 0.3% w/w DCJTB dopant concentration in PFO showed the best ASE performance.
Resumo:
Infrared light-emitting diodes possess potential applications in optical communication and safety detection. in this paper, we fabricated near-infrared light-emitting diodes possess potential applications in optical communication and safety detection. in this paper, we fabricated near-infrared polymer light-emitting diode employing a commercial near-infrared (NIR) organic dye as an emissive dopant dispersed within poly(N-vinylcarbazole) (PVK) by spin-casting method. The used device structure was indium tin oxide/3,4-polyethylene-dioxythiophene-polystyrene sulfonate/PVK: NIR dye/Al.
Resumo:
Catalytic degradation of organic dye molecules has attracted extensive attention due to their high toxicity to water resources. In this paper, we propose a novel method for the fabrication of uniform silver-coated ZnO nanowire arrays. The degradation of typical dye molecule rhodamine 6G (R6G), as an example, is investigated in the presence of the as-prepared silver-coated ZnO nanowire arrays. The experimental results show that such composite nanostructures exhibit high catalytic activity, and the reaction follows pseudo-first-order kinetics. Furthermore, these nanowire arrays are desirable SERS substrates for monitoring the catalytic degradation of dye molecules. Compared with traditional UV-visible spectroscopy, SERS technology can reflect more truly the catalytic degradation process occurring on the surface of the catalysts.
Resumo:
A new cyclic guanidinium ionic liquid OGI (1,3-dimethyl-2-N ''-methyl-N ''-octylimidazoguanidinium iodide) has been used as a quasi-solid-state electrolyte for dye-sensitized solar cells (DSCs), and 6.38% conversion efficiency was achieved at AM 1.5 simulated sunlight (9.81 mW cm(-2)). Further gelation with SiO2 nanoparticles afforded the solid-state electrolyte, which presented overall conversion efficiency of 5.85%. The diffusion properties of these OGI-based electrolytes were investigated. In the meantime, the optimal structure and ion-pairing interaction in OGI have been proposed by density functional theoretical calculation (DFT) at the B3LYP/6-21G(d,p) level.
Resumo:
Low-cost photovoltaic energy conversion using conjugated polymers has achieved great improvement due to the invention of organic bulk heterojunction. in which the nanoscale phase separation of electron donor and acceptor favors realizing efficient charge separation and collection. We investigated the polymer photovoltaic cells using N, N'-bis(1-ethylpropyl)-3,4,9,10-perylene bis(tetracarboxyl diimide)/poly(3-hexyl thiophene) blend as an active layer. It is found that processing conditions for the blend films have major effects on its morphology and hence the energy conversion efficiency of the resulting devices. By optimizing the processing conditions, the sizes of donor/acceptor phase separation can be adjusted for realizing efficient charge separation and collection. The overall energy conversion efficiency of the photovoltaic cell processed with optimized conditions increases by nearly 40% compared to the normally spin-coated and annealed cell.
Resumo:
This paper described a double-chained cationic surfactant, didodecyldimethylammonium bromide (DDAB). for dynamic surface modification of poly(dimethylsiloxane) (PDMS) microchips to reduce the fluorescent dyes adsorption onto the microchannel. When DDAB with a high concentration was present as the dynamic modification reagent in the running and sample buffer, it not only reversed the direction of electroosmotic flow, but also efficiently suppressed fluorescent dyes pyronine Y (PY) or rhodamine 8 (RB) adsorption onto the chip surface. In addition, vesicles formed by DDAB in the buffer with higher surface charge density and electrophoretic mobility could provide wider migration window and potential for the separation of compounds with similar hydrophobicity. Factors affecting modification, such as pH and concentrations of the buffer, DDAB concentration in the buffer were investigated. Compared with commonly used single-chained cetyltrimethylammonium bromide, DDAB provided a better modification performance.
Resumo:
A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.
Resumo:
Cost-effective organic sensitizers will play a pivotal role in the future large-scale production and application of dye-sensitized solar cells. Here we report two new organic D-pi-A dyes featuring electron-rich 3,4-ethylenedioxythiophene- and 2,2'-bis(3,4-ethylenedioxythiophene)-conjugated linkers, showing a remarkable red-shifting of photocurrent action spectra compared with their thiophene and bithiophene counterparts. On the basis of the 3-f{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bis(3,4-ethylenedioxythiophene)-5-yl}2-cyanoacrylic acid dye, we have set a new efficiency record of 7.6% for solvent-free dye-sensitized solar cells based on metal-free organic sensitizers. Importantly, the cell exhibits an excellent stability, keeping over 92% of its initial efficiency after 1000 h accelerated tests under full sunlight soaking at 60 degrees C. This achievement will considerably encourage further design and exploration of metal-free organic dyes for higher performance dye-sensitized solar cells.
Resumo:
We prepared four new ionic liquids consisting of N-methyl-N-allylpyrrolidinium cation in conjunction with anions including iodide, nitrate, thiocyanate, and dicyanamide, respectively, and measured their physical properties of density, viscosity, and conductivity. Owing to the relatively lower melting point of electroactive N-methyl-N-allylpyrrolidinium iodide, in combination with three other nonelectroactive ionic liquids, we could construct solvent-free electrolytes possessing high iodide concentrations for dye-sensitized solar cells. We correlated temperature-dependent electrolyte viscosity with molar conductivity and triiodide mobility through applying an empirical Walden's rule and a modified Stokes-Einstein equation, respectively. We have further found that these anions (nitrate, thiocyanate, and dicyanamide) have different influences on surface states and electron transport in the mesoporous titania film, resulting in different photovoltages and photocurrents of dye-sensitized solar cells.
Resumo:
A high molar extinction coefficient heteroleptic polypyridyl ruthenium sensitizer, featuring a conjugated electron-rich selenophene unit in its ancillary ligand, has been synthesized and demonstrated as an efficient sensitizer in dye-sensitized solar cells. A nanocrystalline titania film stained with this sensitizer shows improved optical absorptivity, which is highly desirable for dye-sensitized solar cells with a thin photoactive layer. With preliminary testing, this sensitizer has already achieved a high efficiency of 10.6% measured under the air mass 1.5 global conditions.
Resumo:
We employed a binary spacer of orderly conjugated 3,4-ethyldioxythiophene and thienothiophene to construct a wide-spectral response organic chromophore for dye-sensitized solar cells, exhibiting a high power conversion efficiency of 9.8% measured under irradiation of 100 mW cm(-2) air mass 1.5 global (AM1.5G) sunlight and an excellent stability.
Resumo:
We conjugated 2-(hexylthio)thiophene with bipyridine to construct a new heteroleptic polypyridyl ruthenium sensitizer exhibiting a charge-transfer band at 550 nm with a molar extinction coefficient of 18.7 x 10(3) M-1 cm(-1). In contrast to its analogues Z907 and C101, a mesoporous titania film stained with this new sensitizer featured a short light absorption length, allowing for the use of a thin photoactive layer for efficient light-harvesting and conversion of solar energy to electricity. With a preliminary testing, we have reached 11.4% overall power conversion efficiency measured at the air mass 1.5 global conditions. Transient photoelectrical decays and electrical impedance spectra were analyzed to picture the intrinsic physics of temperature-dependent photovoltage and photocurrent.
Resumo:
Six organic dyes with different conjugated linkers such as furan, bifuran, thiophene, bithiophene, selenophene, and biselenophene have been prepared in combination with the dihexyloxy-substituted triphenylamine donor and the cyanoacrylic acid acceptor. In conjunction with an acetonitrile-based electrolyte and a solvent-free ionic liquid electrolyte, these dyes exhibit 6.88-7.77% and 6.39-7.00% efficiencies, respectively. We have demonstrated that furan and selenophene can be employed as building blocks of sensitizers in stable solar cells for the first time. We have also studied the influence of heteroatoms on photocurrents and photovoltages with the aid of quantum calculations and transient photoelectrical decay measurements. Temperature-dependent electrical impedance experiments have shown that a relatively low external quantum efficiency of the dye with biselenophene linker is not related to the charge collection yield in the case of an acetonitrile electrolyte.