88 resultados para excitation energy
Resumo:
Mn2+-doped xBaO center dot 6Al(2)O(3) and BaMgAl10O17 phosphors were prepared by solid-state reaction. The investigation of vacuum ultraviolet (VUV) excitation spectra of these phosphors exhibits that 0.82BaO center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ have a stronger absorption than BaO center dot 6Al(2)O(3):Mn2+ at about 147 nm. The emission spectra under VUV excitation demonstrated that 0.82BaOBa center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ have a higher luminescent intensity than BaO center dot 6Al(2)O(3):Mn2+. The lifetime analysis indicates that they have similar decay times, indicating that 0.82BaOBa center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ can be used as luminescent materials for plasma display panels. We observed that the critical concentration of the Mn2+ ions by host excitation is different from that of Mn2+ direct excitation, revealing a different mechanism of energy transfer. The critical distance was calculated. A model was suggested to explain the process of the energy transfer from the host to the Mn2+ ions.
Resumo:
Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.
Resumo:
Ca2Gd8(SiO4)(6)O-2: A(A = Ph2+, Tm3+) phosphors were prepared through the sol-gel process. X-ray diffraction (XRD), scanning electron microseopy(SEM) and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicate that the phosphors crystallized completely at 1000 degreesC. SEM study reveals that the average grain size is 300 similar to 1000 nm. In Ca2Gd8(SiO4)(6)O-2: Tm3+ phosphors, the Tm3+ shows its characteristic blue emission at 456 nm (D-1(2)-F-3(4)) upon excitation into its H-3(6)-D-1(2)(361 nm), with an optimum doping concentration of 1 mol% of Gd3+ in the host lattices. In Ca2Gd8(SiO4)(6)O-2: Pb2+, Tm3+ phosphors, excitation into the Ph2+ at 266 nm (S-1(0)-P-3(1)) yields the emissions of Gd3+ at 311 nm (P-6-S-8) and Tm3+ at 367 nm (D-1(2)-H-3(6)) and 456 our (D-1(2)-F-3(4)), indicating that energy transfer processes of Pb2+-Gd3+ and Ph2+-Tm3+ have occur-red in the host lattices.
Resumo:
Organically modified silica xerogels (OMSX) and Eu3+ (Tb3+)-doped OMSX were prepared by the reaction of (3-aminopropyl) triethoxysilane (APS) with 3-isocyanatepropyltriethoxysilane (ICPTES) followed by the subsequent hydrolysis and condensation in the presence of Eu3+ (Tb3+) via sol-gel method, which were characterized by FT-IR, XRD, fluorescence excitation and emission spectra. The as-formed OMSX shows a strong blue emission with the maximum excitation and emission wavelength at 351 and 420 nm, respectively. Due to the spectral overlap between the emission band of OMSX and f-f absorption lines of Eu3+ and Tb3+ in the UV-blue region, an energy transfer was observed from OMSX host to Eu3+ and Tb3+ in OMSX/Eu3+ and OMSX/Tb3+, respectively. Excitation at 350-360 nm resulted in a very weak emission around 420 nm from OMSX host and strong emission of Eu3+ and Tb3+ in OMSX/Eu3+ and OMSX/Tb3+, respectively. The emission spectra of Eu3+ and Tb3+ consist of D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4) and D-5(4)-F-7(J) (J = 6, 5, 4, 3), respectively. Furthermore, the predicted structure of OMSX/Eu3+ and OMSX/Tb3+ is presented.
Resumo:
Y2O3:Sm and Gd2O3:Sm powder phosphors were prepared by carbonate coprecipitation method. The purified crystalline phases of Y2O3:Sm and Gd2O3:SM were obtained at 600degreesC, and the crystallinity increases with increase in annealing temperature. Both samples contain aggregated phosphor particles. An energy transfer (ET) from Y2O3 and Gd2O3 hosts to sm(3+) has been observed, and the ET efficiency in the latter is higher than that in the former because an energy migration process like Gd3+-(Gd3+)(n)-Sm3+ has occurred in the latter. Furthermore, an upconversion luminescence from the (4)G(5/2) level of Sm3+ has been observed in both Y2O3 and Gd2O3 under the excitation of 936 nm infrared, whose mechanisms are proposed. Both the up and downconversion emission intensities of Sm3+ in Gd2O3 are stronger than those in Y2O3.
Resumo:
The luminescence properties of Ce3+ and Tb3+ in Y3Si2O8Cl have been investigated. The Ce3+ excitation bands in the region from 220 to 360 run are attributed to the transitions from 4f level to the crystal-field splitting levels of 5d.
Resumo:
Vacuum ultraviolet excitation spectra of LnAl(3)B(4)O(12):Re (Ln = Y, Gd; Re = Eu, To), along with X-ray photoelectron spectra, were measured. The spectra are tentatively interpreted in terms of the optical properties of the rare earth ions and the band structure. It was found that there is an energy transfer from the hosts to the rare earth ions. It was also found that the top of the valence band in the Gd compound is mainly formed by the 2p levels of O2- and the 4f levels of Gd3+, and in the Y compound mainly by the 2p levels of O2-. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The infrared spectra of BaLnB(9)O(16):Re, along with the VUV excitation spectra, have been measured. The spectra were tentatively interpreted in terms of the data on absorptions of the borate groups and band structure. It was observed that there are absorption due to BO3 and BO4 groups, indicating that there are BO3 and BO4 groups in BaLnB(9)O(16). It is found that absorption of the borate groups is located in the range from 120 to 170 mn. This result reveals that there is an energy transfer from host to the rare earth ions. It also observed that the energy of charge transfer band, the host absorption, the total crystal field splitting of d-levels of Tb3+ increase with the decrease in the Ln(3+) radius. (C) 2001 Elsevier Science B.V. All rights reserved.
Energy transfer from Ce3+ to Eu2+ and electron transfer from Ce3+ to Eu3+ in BaY2F8 : Ce, Eu systems
Resumo:
Phorsphors of BaY2F8 : Ce3+, BaY2F8: EU2+ and BaY2F8 : Ce, Eu were prepared by higher temperature solid reaction and their excitation, emission and diffuse reflection spectra were made. We firstly found that the competition of energy transfer from Ce3+ to Eu2+ and electron transfer from Ce3+ to EU3+ existed in CeF3 and EuF3-co-doped BaY2F8 systems. The f-f transition emission of EU2+ was increased with increasing x in systems BaY2F8 : 0. 03Ce, xEU. Ce4+ ions coexist,with Ce3+ ions and substitute Y3+ for Ce4+ in the systems BaY2F8 : Eu, Cc.
Resumo:
The luminescence properties of Ce3+, Gd3+, and Tb3+ have been investigated in the compound CaAl2B2O7. The single excitation band peaking at about 320 nm and single emission band peaking at about 384 nm for Ce3+, without the characteristic doublet, are attributed to the extensive crystal-field splitting of 4f ground state. The emission of Gd3+ consists of well-known sharp lines and two weak bands around 319.5 and 325 nm. These bands are due to the coupling of Gd3+ with BO33- groups. The green emission of Tb3+ is considerably sensitized by Ce3+. Energy transfer from Ce3+ to Tb3+ in CaAl2B2O7 is efficient. (C) 1997 Elsevier Science Ltd.
Resumo:
The Pb2+ luminescence in a series of silicate oxyapatites Me(2)(Y, Gd)(8)(SiO4)(6)O-2, Me(4)Y(6)(SiO4)(6)O (Me = Mg: Ca, Sr) is reported and discussed in relation to the crystal structure. The maximum wavelengths of the excitation (S-1(0)-P-3(1)) and emission (P-3(1)-S-1(0)) bands of Pb2+ are independent of the Mc:Y ratio (2:8 or 4:6) but they have lower energies in MgY-oxyapatites than in CaY- and SrY-oxyapatites. The Stokes shift of Pb2+ luminescence amounts to 11 100 to 11 400 cm(-1): which does not depend strongly on the host composition. There exists a mutual energy transfer between Pb2+ and Gd3+ in Sr2Gd8(SiO4)(6)O-2. At last, the dependence of the energy transfer efficiency of Pb2+-Sm3+, Tb3+: Dy3+ in Sr-2(La: Gd)(8)(SiO4)(6)O-2 and Ca-2(Y, Gd)(8)(SiO4)(6)O-2 on their doping concentrations was studied in more detail.
Resumo:
The photoluminescence of Ce3+, Tb3+ and Sm3+, and energy transfer from Ce3+ to Tb3+, Dy3+ and Sm3+ in Mg2Y8(SiOd(4))(6)O-2 are reported and discussed. The Ce3+ ion shows blue luminescence under UV excitation, and occupies simultaneously the 4f site and 6h site in the host lattice. The optimum concentrations for the D-5(3) and D-5(4) emissions of Tb3+ and the (4)G(5/2) emission of Sm3+ are determined to be 0.04, 0.20 and 0.10 mol in every mol of Mg2Y8(SiO4)(6)O-2, respectively. The critical distances responsible for the cross-relaxation between the D-5(3)-D-5(4) and F-7(6)-F-7(0) transitions of Tb3+ and between the (4)G(5/2)-F-4(9/2) and H-6(5/2)-F-4(9/2) transitions of Sm3+ are estimated to be 1.43 and 1.06 nm, respectively. Both Tb3+ and Dy3+ can be sensitized by Ce3+, but Ce3+ and Sm3+ quench each other.
Resumo:
In this paper we report on the luminescence and energy transfer in GdP4O14:Eu3+,Sm3+ (GdPP:Eu,Sm) in single crystals grown by the hydrothermal method. The room temperature excitation, emission, absorption and IR spectra of the crystals have been measured and analysed. The energy transfer from Gd3+ and Sm3+ to Eu3+ ions in GPP:Eu,Sm crystals is also discussed.