181 resultados para electrochemical impedance spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle and technique of double layer capacitance and its application in electrochemical biosensor are briefly reviewed with 50 references. The future development of double layer capacitance biosensor is expected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, electrochemical surface plasmon resonance (SPR) method was first used to detect enzymatic reaction in bilayer lipid membrane (BLM) based on immobilizing horseradish peroxidase (HRP) in the BLMs supported by the redox polyaniline (PAn) film. By SPR kinetic curve in situ monitoring the redox transformation of PAn film resulted from the reaction between HRP and PAn, the enzymatic reaction of HRP with H2O2, was successfully analyzed by electrochemical SPR spectroscopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dithiols of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole (HDMC) have been synthesized and employed to form self-assembled monolayers (SAMs) on gold. One characteristic of the HDMC molecule is its peculiar molecular structure consisting of a large and rigid headgroup and a small and flexible alkyl-chain tail. HDMC adsorbates can attach to gold substrates by a strong Au-S bond with weak van der Waals interactions between the alkyl-chain tails, leading to a loosely packed hydrophobic SAM. In this way we can couple hybrid bilayer membranes (HBMs) to gold surfaces with more likeness to a cell bilayer than the conventional HBMs based on densely packed long-chain alkanethiol SAMs. The insulating properties and stability of the HDMC monolayer as well as the HDMC/lipid bilayer on gold have been investigated by electrochemical techniques including cyclic voltammetry and impedance spectroscopy. To test whether the quality of the bilayer is sufficiently high for biomimetic research, we incorporated the pore-forming protein a-hemolysin) and the horseradish peroxidase into the bilayers, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The immobilization of surface-derivatized gold nanoparticles onto methyl-terminated self-assembled monolayers (SAMs) on gold surface was achieved by the cooperation of hydrophobic and electrophoretic forces. Electrochemical and scanning probe microscopy techniques were utilized to explore the influence of the SAM's structure and properties of the nanoparticle/SAM/gold system. SAMs prepared from 1-decanethiol (DT) and 2-mercapto-3-n-octylthiophene (MOT) were used as hydrophobic substrates. The DT SAM is a closely packed and organized monolayer, which can effectively block the underlying gold and inhibit a variety of solution species including organic and inorganic molecules from penetrating, whereas the MOT monolayer is poorly packed or disorganized (because of a large difference in dimension between the thiophene head and the alkylchain tail) and permeable to many organic probes in aqueous solution but not to inorganic probes. Thus, the MOT monolayer provides a more energetically favorable hydrophobic surface for the penetration and adsorption of organic species than the DT monolayer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Calf thymus DNA was immobilized on functionalized glassy carbon, gold and quartz substrates, respectively, by the layer-by-layer (LBL) assembly method with a polycation QPVP-Os, a quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) as counterions. UV-visible absorption and surface plasmon resonance spectroscopy (SPR) showed that the resulting film was uniform with the average thickness 3.4 nm for one bilayer. Cyclic voltammetry (CV) showed that the total surface coverage of the polycations increases as each QPVP-Os/DNA bilayer added to the electrode surface, but the surface formal potential of Os-centered redox reaction shifts negatively, which is mainly attributed to the intercalation of redox-active complex to DNA chain. The electron transfer kinetics of electroactive QPVP-Os in the multilayer film was investigated by electrochemical impedance experiment for the first time. The permeability of Fe(CN)(6)(3-) in the solution into the multilayer film depends on the number of bilayers in the film. It is worth noting that when the multilayer film is up to 4 bilayers, the CV curves of the multilayer films display the typical characteristic of a microelectrode array.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

IrO2/SnO2 (10%:90%, molar ratio) electrodes (ITEs) were prepared by the sol-gel method as an alternative to the electrode-position and thermal decomposition process. The electrodes were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS). From the results of XRD, oxide films prepared at low temperature were in amorphous state, while hydrous IrO2 crystal and cassiterite phase SnO2 were formed at 300 degreesC or even to 500 degreesC. The highly porous structure was confirmed by AFM. The electrochemical experiments demonstrated that the sol-gel method made the ITEs having a fast electron transfer process with good stability and the optimal preparation temperature was 400 degreesC for the highest electroactivity. Furthermore, the electrocatalysis of pyrocatechol on the electrodes was investigated. A quasi-reversible process occurred and a linear range over three orders magnitude (1 x 10(-2) - 10 mM) was obtained by differential pulse voltammetry (DPV). Meanwhile the detection limit of pyrocatechol was 5 x 10(-3) mM. This study indicated that the sol-gel method was an appropriate route to prepare the IrO2/SnO2 electrodes for the electrocatalytic of pyrocatechol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-assembled monolayers (SAMs) of 4,4'-thiobisbenzenethiol (TBBT) can be formed on Au surface spontaneously. The structural characteristics and adsorption behavior of TBBT SAMs on Au have been investigated by surface enhanced Raman scattering (SERS), electrochemical cyclic voltammetry (CV), ac impedance spectroscopy (EIS), and atomic force microscopy (AFM). It is demonstrated that TBBT adsorbed on Au by losing a H atom, forming one Au-S bond, and the other mercapto group is free at the surface of the monolayer owing to the presence of the nu(S-H) at 2513 cm(-1) and the delta(C-S-H) at 910 cm(-1) in SERS. The enhancement of the vibration of C-S (1064 cm(-1)), the aromatic C-H vibration (3044 cm(-1)), and the absence of the vibration of S-S illustrate TBBT adsorbed on Au forming a monolayer with one benzene ring tilted with respect to the Au surface. The interpretation of the observed frequencies is aided by ab initio molecular orbital (MO) calculations at the HF/6-31G* level of theory. Electrochemical CV and EIS indicate TBBT monolayers can passivate the Au effectively for its low ratio of pinhole defects (theta = 99.6%). AFM studies give details about the surface morphology. The applications of TBBT SAMs have been extensively investigated by exposure of Cu2+ ion to TBBT SAMs on Au and covalent adsorption of metal nanoparticles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ibuprofen is a well-known nonsteroidal anti-inflammatory drug, which can interact with lipid membranes. In this paper, the interaction of ibuprofen with bilayer lipid membrane was studied by UV-vis spectroscopy, cyclic voltammetry and AC impedance spectroscopy. UV-vis spectroscopy data indicated directly that ibuprofen could interact with lipid vesicles. In electrochemical experiments, ibuprofen displayed a biphasic behavior on bilayer lipid membrane supported on a glassy carbon electrode. It could stabilize the lipid membrane in low concentration, while it induced defects formation, even removed off bilayer lipid membrane from the surface of the electrode with increasing concentration. The mechanism about the interaction between ibuprofen and supported bilayer lipid membrane was discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An inherently disorganized self-assembled monolayer (SAM) of 2-mercapto-3-n-octylthiophene (MOT) has been formed on a gold bead electrode from its dilute ethanolic solution. The disorganization of the monolayer is attributed to the loose packing of the aliphatic chains of the MOT adsorbates, which results from a large difference in dimension/or cross-sectional area between the head (thiophene thiolate) and the tail (alkane chain) groups. Electrochemical measurements including ac impedance spectroscopy and metal underpotential deposition have shown that the monolayer is almost pinhole free. However, the MOT SAM can be penetrated by an organic probe molecule with affinity for the alkane chain part of the monolayer. Some typical probe molecules with different size and hydrophilicity have been employed to assess the permselectivity of the monolayer. Measurement results demonstrate that the ability of the employed probe molecules to penetrate into the monoalyer is mainly dominated by their hydrophilicity/or hydrophobicity. The results presented here suggest the potential application of MOT monoalyer to effectively modify the electrode surface for several research areas such as electrochemical sensors, electrocatalysis, electroanalysis, and supported hybrid bilayer membranes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Calf-thymus DNA-incorporated bilayer lipid membranes supported on a glassy carbon (GC) electrode was prepared by making layers of phosphatidylcholine dimyristoyl (DMPC) on GC electrode. DNA in the BLM was characterized by cyclic voltammetry, IR and AFM, and lipid layers formed on the GC electrode were demonstrated to be a bilayer lipid membrane by electrochemical impedance experiment. In IR and AFM experiments the findings indicated that DNA was incorporated into BLM. The ion channel of bilayer lipid membranes incorporated was studied. The result showed that the ion channel was opened in the presence of the stimulus quinacrine. In the absence of quinacrine the channel was switched. The process can repeat itself many times. The impedance spectroscopy measurements demonstrate that the stimulus quinacrine opens the channel for permeation of marker ion. The mechanism of forming an ion channel was investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amphotericin B (AmB) is a popular drug frequently applied in the treatment of systemic fungal infections. In the presence of ruthenium (II) as the maker ion, the behavior of AmB to form ion channels in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes were studied by cyclic votammetry, AC impedance spectroscopy, and UV/visible absorbance spectroscopy. Different concentrations of AmB ranging from a molecularly dispersed to a highly aggregated state of the drug were investigated. In a fixed cholesterol or ergosterol content (5 mol %) in glassy carbon electrode-supported model membranes, our results showed that no matter what form of AmB, monomeric or aggregated, AmB could form ion channels in supported ergosterol-containing phosphatidylcholine bilayer model membranes. However, AmB could not form ion channels in its monomeric form in sterol-free and cholesterol-containing supported model membranes. On the one hand, when AmB is present as an aggregated state, it can form ion channels in cholesterol-containing supported model membranes; on the other hand, only when AmB is present as a relatively highly aggregated state can it form ion channels in sterol-free supported phosphatidylcholine bilayer model membranes. The results showed that the state of AmB played an important role in forming ion channels in sterol-free and cholesterol-containing supported phosphatidylcholine bilayer model membranes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction of lanthanide ions with a supported bilayer lipid (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) membrane (sBLM) was investigated by cyclic voltammetry and ac impedance spectroscopy in this paper, Lanthanide can affect the conformation of the supported bilayer lipid membrane and cause pore formation. Through the pores, Fe(CN)(6)(3) (4) can reach the electrode surface and show its redox behaviour. Furthermore the redox currents or Fe(CN)(6)(3) (4) increased with increasing concentration of lanthanides and leveled off at 1.2 muM for Eu3+. The interaction ability of three lanthanides with sBLM follows the sequence: Eu3+ > Tb3+ > La3+.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diaminoalkanes (NH2(CH2)(n)NH2, n = 7,10,12) were grafted onto a glassy carbon electrode (GCE) surface by amino cation radical formed during electrooxidation of amino group. The presence of diamine grafted layer at the GCE is demonstrated by X-ray photoelectron spectroscopy. The effect of the grafted layer at the GCE surface on the redox responses of Ru(NH3)(6)(3+) and Fe(CN)(6)(3-) redox probes has been investigated. Electrochemical impedance experiments indicate that the kinetics of electron transfer are slowed down when the scan rate taken to modify the GCE is low, and that diaminoalkane with longer alkyl-chain used has higher blocking characteristics. The amine-functionalized GCE is versatile not only to further covalently immobilize ferrocene acetic acid via carbodiimide coupling, but also as a charge-rich substrate to successfully adsorb heteropolyanion P2W18 in acidic solution by electrostatic interaction. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation process of the amino-containing compound. X-ray photoelectron spectroscopy measurement proves the presence of 4-carboxylphenylamine monolayer on the GCE. The redox responses of various electroactive probes were investigated on the 4-ABA-modified GCE. Electron transfer to Fe(CN)(6)(3-) in solutions of various pHs was studied by both cyclic voltammetry and electrochemical impedance analysis on the modified electrode. Changes in the solution pH value result in the variation of the terminal group charge state, based on which surface pK(a) values are estimated. The 4-ABA-modified GCE was used as a suitable charged substrate to fabricate polyoxometalates-consisting (POM-consisting) monolayer and multilayer films through layer-by-layer assembly based on electrostatic attraction. Cyclic voltammetry shows the uniform growth of these three-dimensional multilayer films. Taking K10H3[Pr-(SiMo7W4O39)(2)]. H2O (abbreviated as Pr(SiMo7W4)(2)), for example, the preparation and electrochemical behavior of its monolayer and multilayer film had been investigated in detail. This modification strategy is proven to be a general one suitable for anchoring many kinds of POMs on the 4-ABA-modified GCE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monolayer assembly of 2-mercapto-3-n-octylthiophene (MOT) having a relatively large headgroup onto gold surface from its dilute ethanolic solutions has been investigated by electrochemistry. An electrochemical capacitance measurement on the permeability of the monolayer to aqueous ions, as compared with its alkanethiol counterpart [CH3(CH2)(9)SH (DT)] with a similar molecular length, shows that the self-assembled monolayers (SAMs) of MOT can be penetrated by aqueous ions to some extent. Furthermore, organic molecular probes, such as dopamine, can sufficiently diffuse into the monolayer because a diffusion-limited current peak is observed when the dopamine oxidation reaction takes place, showing that the monolayer is loosely packed or dominated by defects. But the results of electron transfer to aqueous redox probes (including voltammetry in Fe(CN)(6)(3-/4-) solutions and electrochemical ac impedance spectrum) confirm that the monolayer can passivate the gold electrode surface effectively for its very low ratio of pinhole defects. Moreover, a heterogeneous patching process involving addition of the surfactants into the SAMs provides a mixed or hybrid membrane that has superior passivating properties. These studies show that the MOT monolayer on the electrode can provide an excellent barrier for hydrated ionic probe penetration but cannot resist the organic species penetration effectively. The unusual properties of the SAMs are attributed to the entity of the relatively large thiophene moiety between the carbon chain and the thiol group.