119 resultados para coordinate descent
Resumo:
The solid state complexes of trivalent lanthanid, yttrium and scandium with cyclohexane carboxylic acid have been isolated and characterized by IR and Raman spectroscopy. It was found that there are only chelated carboxylate groups in the scandium complex and that there are the chelated, bridged and chelate-bridged carboxylate groups in other rare earth complexes. The former is a mononuclear complex and the latter is a polynuclear polymer. The RE—O coordinate bonds possess the characters of convalent ionic ...
Resumo:
Satellite and in situ observations in the equatorial Atlantic Ocean during 2002-03 show dominant spectral peaks at 40-60 days and secondary peaks at 10-40 days in sea level and thermocline within the intraseasonal period band (10-80 days). A detailed investigation of the dynamics of the intraseasonal variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Atlantic Ocean basin for the period 2000-03: one is forced by daily scatterometer winds from the Quick Scatterometer (QuikSCAT) satellite together with other forcing fields, and the other is forced by the low-passed 80-day version of the above fields. To help in understanding the role played by the wind-driven equatorial waves, a linear continuously stratified ocean model is also used. Within 3 degrees S-3 degrees N of the equatorial region, the strong 40-60-day sea surface height anomaly (SSHA) and thermocline variability result mainly from the first and second baroclinic modes equatorial Kelvin waves that are forced by intraseasonal zonal winds, with the second baroclinic mode playing a more important role. Sharp 40-50-day peaks of zonal and meridional winds appear in both the QuikSCAT and Pilot Research Moored Array in the Tropical Atlantic (PIRATA) data for the period 2002-03, and they are especially strong in 2002. Zonal wind anomaly in the central-western equatorial basin for the period 2000-06 is significantly correlated with SSHA across the equatorial basin, with simultaneous/ lag correlation ranging from-0.62 to 0.74 above 95% significance. Away from the equator (3 degrees-5 degrees N), however, sea level and thermocline variations in the 40-60-day band are caused largely by tropical instability waves (TIWs). On 10-40-day time scales and west of 10 degrees W, the spectral power of sea level and thermocline appears to be dominated by TIWs within 5 degrees S-5 degrees N of the equatorial region. The wind-driven circulation, however, also provides a significant contribution. Interestingly, east of 10 W, SSHA and thermocline variations at 10 40- day periods result almost entirely from wind-driven equatorial waves. During the boreal spring of 2002 when TIWs are weak, Kelvin waves dominate the SSHA across the equatorial basin (2 degrees S-2 degrees N). The observed quasi-biweekly Yanai waves are excited mainly by the quasi-biweekly meridional winds, and they contribute significantly to the SSHA and thermocline variations in 1 degrees-5 degrees N and 1 degrees-5 degrees S regions.
Resumo:
A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annual transports through the four straits Luzon Strait, Taiwan Strait, Sunda Shelf and Mindoro Strait are -4.5, 2.3, 0.5 and 1.7 Sv (1 Sv=10(6) m(3)s(-1)), respectively. The Mindoro Strait has an important outflow that accounts for over one third of the total inflow through the Luzon Strait. Furthermore, it indicates that there are strong seasonal variations of water transport in the four straits. The water transport through the Luzon Strait (Taiwan Strait, Sunda Shelf, Mindoro Strait) has a maximum value of -7.6 Sv in December (3.1 Sv in July, 2.1S v in January, 4.5Sv in November), a minimum value of -2.1 Sv in June (1.5 Sv in October, -1.0 Sv in June, -0.2 Sv in May), respectively.
Resumo:
The effective thermal conductivity of graded composites with contact resistance on the inclusion surface is investigated. As an example, we have considered the graded composite media with a spherical particle embedded in a homogeneous matrix, where the thermal conductivity of spherical inclusion is an exponential function k(i) = c exp(betar) (where r is the inside distance of a point in particle from the center of the spherical particle in a spherical coordinate). For both heat contact resistance and perfect contact cases, we have given a reasonable effective medium approximation to calculate the effective conductivity. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In consideration of the problem on the boundary condition of nonlinear free water wave, coordinate transform is used to handle the free boundary. Supposing the solution form be the traveling wave, the ordinary differential equations of the one-order autonomous system with two variables are caused, then expanding the nonlinear terms at the equilibrium point with the Taylor expansion, we obtained the solution to traveling wave. The linear approximate equation near the equilibrium point is the small amplitude wave. A new nonlinear periodic traveling wave and nonlinear dispersion relation are shown when expanding to the second-order terms. A conclusion that the expansion of dispersion relation does not contain any odd-power terms of wave steepness and because of the nonlinear effort an oscillate structure is produced in the vertical direction is drawn.
Resumo:
We explore control mechanisms underlying the vertical migration of zooplankton in the water column under the predator-avoidance hypothesis. Two groups of assumptions in which the organisms are assumed to migrate vertically in order to minimize realized or effective predation pressure (type-I) and to minimize changes in realized or effective predation pressure (type-II), respectively, are investigated. Realized predation pressure is defined as the product of light intensity and relative predation abundance and the part of realized predation pressure that really affects organisms is termed as effective predation pressure. Although both types of assumptions can lead to the migration of zooplankton to avoid the mortality from predators, only the mechanisms based on type-II assumptions permit zooplankton to undergo a normal diel vertical migration (morning descent and evening ascent). The assumption of minimizing changes in realized predation pressure is based on consideration of DVM induction only by light intensity and predators. The assumption of minimizing changes in effective predation pressure takes into account, apart from light and predators also the effects of food and temperature. The latter assumption results in the same expression of migration velocity as the former one when both food and temperature are constant over water depth. A significant characteristic of the two type-II assumptions is that the relative change in light intensity plays a primary role in determining the migration velocity. The photoresponse is modified by other environmental variables: predation pressure, food and temperature. Both light and predation pressure are necessary for organisms to undertake DVM. We analyse the effect of each single variable. The modification of the phototaxis of migratory organisms depends on the vertical distribution of these variables. (C) 2001 Academic Press.
Resumo:
研发了基于眼固定安装方式的机器人定位系统,提出了一种方便有效的手眼标定方法。通过最小二乘法求解手眼坐标的变换关系,再根据工作台平面与摄像机成像模型的约束关系,求解出目标物体的三维位姿,并最终实现了机械手的精确定位。
Resumo:
应用于融动化生产线基于眼固定安装方式的机器人定位系统,提出了一种方便有效的手眼标方法。通过最小二乘法求解手眼坐标的变换关系,再根据工作台平面与摄像机成像模型的约束关系,求解出目标物体的三维位姿,并最终实现丁机械手的精确定位。
Resumo:
针对多机器人探索未知环境问题,提出了改进型边界探索算法。该算法综合考虑边界角度和距离两种因素,引入分散机制,使机器人团队协同工作,避免出现拥挤,减少探索过程中的重复覆盖和路径交叉现象。基于与其他方法的实验比较结果表明,该探索方法使多机器人具有更好的团队协作能力,提高了探索效率。
Resumo:
提出全地形轮式移动机器人的正逆运动学问题。将机器人看成一个混合串-并联多刚体系统,从每个轮-地接触点到机器人车体分别构成一个串联子系统,抛弃车轮纯滚动假设,在轮-地接触点处建立瞬时坐标系,考虑车轮的平面滑移,从而对每个串联子系统形成一个封闭的速度链。对于每个速度闭链,可直接在驱动轮轮心处写出从机器人各驱动轮到机器人本体之间的运动方程,将每个速度闭链的运动方程合并即可得到机器人的整体运动学模型。以一个具有被动柔顺机构的六轮全地形移动机器人为对象进行推导,该方法既考虑了地形不平的影响,又考虑了车轮的前向、侧向及转向滑移,已知机构参数后就可以直接写出机器人的速度方程,且便于运动学求解。该方法对于轮式移动机器人的运动学建模具有一般性,且具有物理意义明确、推导过程简洁等特点。
Resumo:
为了提高传感器的测量精度,研究了六维力传感器标定矩阵的构造方法。首先,指出了传统标定矩阵的物理意义。然后,在传统标定矩阵中引入坐标平移变换算式,提出了一种综合考虑位置、姿态、坐标轴刻度比例缩放变换关系的六维力传感器静态标定方法。在标定试验的基础上,构造了标定矩阵,并对实测数据进行了补偿计算。误差分析表明:在传感测量系统无平移系统误差时,与传统标定方法相比,该方法的补偿精度略有下降。当在传感测量中加入平移系统误差时,该方法的补偿精度不变,而传统标定方法的测量精度明显下降。该方法起到了消除平移系统误差作用。
Resumo:
为了实现定位抓取任务,提出基于网络的直角坐标机器人视觉控制系统。针对机器人运动控制的非线性与强耦合特性,采用神经网络控制器,构建了图像偏差与运动控制量之间的对应关系。通过对图像增强、边缘提取、特征提取等图像处理方法的综合分析,提出了一套优化组合图像处理法。在计算机网络环境下,采用自定义协议实现图像处理器与运动控制器协调控制,并将远程监控应用到机器人控制中。实验结果表明,该系统能够在视野范围内自动实现定位抓取动作。
Resumo:
针对大射电望远镜精调Stewart平台的五自由度运动特性,采用快速极坐标搜索法确定了五自由度大射电望远镜精调Stewart平台的工作空间.通过实例分析验证了所提出的工作空间分析方法的有效性.为大射电望远镜馈源轨迹跟踪实现和精调Stewart平台的设计奠定了坚实的基础.
Resumo:
以异体同构周边式对接机构差动式缓冲系统为对象 ,将缓冲机构分解成 6个独立分支 ,通过设立局部坐标系 ,建立缓冲系统运动学正、逆解模型。该建模方法可以消除各分支之间的耦合关系 ,使建模得以简化。算例说明这种缓冲系统运动学模型是正确有效的。
Resumo:
在主从式UUV 协作系统中,由于定位和导航的需要,要求尽快估计出从UUV 的航行参数,但通常所用的递推最小二乘(RLS)算法,其初始方位测量对滤波结果影响大且存在收敛速度慢、计算精度低的缺点,难以满足应用需求,而推广卡尔曼滤波(EKF)算法能较好地克服上述问题。在直角坐标系下(CEKF),方位信息与距离信息相互耦合导致初始振荡剧烈,改为混合坐标系(MEKF)后问题得到了极大的改善。最后,通过仿真及现场试验验证了此改进方法的有效性。