84 resultados para cold stratification
Resumo:
In general, competition between buoyancy mechanisms and mixing dynamics largely determines the water column structure in a shelf sea. A three dimensional baroclinic ocean model forced by surface heat fluxes and the 2.5 order Mellor-Yamada turbulence scheme is used to simulate the annual cycle of the temperature in the Bohai Sea. The difference between the sea surface temperature (SST) and sea bottom temperature (SBT) is used to examine the evolution of its vertical stratification. It is found that the water column is well-mixed from October to March and that the seasonal thermocline appears in April, peaks in July and then weakens afterwards, closely following the heat budget. In addition, the Loder parameter based on the topography and tidal current amplitude is also computed in order to examine tidal fronts in the BS, which are evident in summer months when the wind stirring mechanism is weak.
Resumo:
We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34 degrees N and 35 degrees N, 122 degrees E and 124 degrees E) of the Yellow Sea is mainly occupied by relatively high temperature water (T > 10 degrees C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T < 10 degrees C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34 degrees N and 37 degrees N, 123 degrees E and 126 degrees E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We have observed that Calanus sinicus retreated from neritic areas in the Yellow Sea and concentrated in the Yellow Sea Cold Bottom Water (YSCBW) area in summer. To investigate the summer reproductive strategy of C. sinicus in this situation, effects of high temperature on reproduction and hatching, as well as geographical variation of in situ egg production rate, were studied by onboard incubation in August 2001. Diel vertical migration (DVM) of females was investigated within and outside the YSCBW, respectively. Onboard incubation at 27 degrees C (i.e. surface temperature) resulted in lower fecundities than that at 9.8 and 12 degrees C (i.e. bottom temperature inside and outside the YSCBW) together with decreased hatching rates and increased naupliar malformation. Egg production was more active at stations outside the YSCBW than inside, where chlorophyll-a concentration was also relatively low. Females inside the YSCBW underwent DVM although they rarely entered the surface layer, but DVM was not observed outside the YSCBW. We conclude that surface temperature in summer has deleterious effects on C. sinicus egg production and hatching, and that it cannot reproduce successfully over the whole area. Inside the YSCBW, egg production is depressed by low food availability, while females outside suffer from high temperatures because of strong vertical mixing.
Resumo:
The distribution, feeding and oxygen consumption of Calanus sinicus were studied in August 2001 on a transect across Yellow Sea Cold Bottom Waters (YSCBW) and two additional transects nearby. The distribution of C. sinicus adults and copepodites stage CV appeared to be well correlated with water temperature. They tended to concentrate in the YSCBW (>10,000 ind. m(-2)) to avoid high surface temperature. Gut pigment contents varied from 0.44 to 2.53 ng chlorophyll a equivalents (chl a equiv.) ind.(-1) for adults, and from 0.24 to 2.24 ng chl a equiv. ind.(-1) for CV copepodites. We found no relationship between gut pigment contents and the ambient chl a concentrations. Although the gut evacuation rate constants are consistent with those measured for other copepods, their low gut pigment contents meant an estimated daily herbivorous ingestion of <3% of body carbon in the YSCBW and <10% outside the YSCBW. However, based on estimates of clearance rates, C. sinicus feeds actively whether in the YSCBW or not, so the low ingestion rates probably reflect shortage of food. Oxygen consumption rates of C. sinicus ranged from 0.21 to 0.84 mul O-2 ind.(-1) h(-1), with high rates often associated with high temperature. From the oxygen consumption rates, daily loss of body carbon was estimated to be 4.0-13.7%, which exceeds our estimates of their carbon ingestion rates. C. sinicus was probably not in diapause, either within or outside the YSCBW, but this cold-water layer provides C. sinicus with a refuge to live through the hot, low-food summer.
Resumo:
The vertical distribution and stage-specific abundance of Calanus sinicus were investigated on three key transects in the southern Yellow Sea and the northern East China Sea in August 1999. The results showed that in summer C. sinicus shrank its distribution area to the central cold (less than or equal to10degreesC) bottom water in the Yellow Sea, i.e. the Yellow Sea Cold Bottom Water, remaining in high abundance (345.7 ind m(-3)). In the northern East China Sea on a transect from the mouth of the Yangtze River to the Okinawa trench, only a few individuals appeared in the inner side and none had been found either in the upper layer or in the deep layer of the outer shelf area. The population of C. sinicus in YSCBW consisted of mainly adults (46.83%) and C5 (37.41%). C1-C4 only accounted for 15.76%. The low proportion of the earlier copepodite stages and the high female:male ratio (11.39) indicated that the reproduction of C. sinicus in YSCBW was at a very low level due to the low temperature and low food concentration. It is concluded that the dramatic decrease of C. sinicus population in the shelf area of China seas in summer is caused by the shrinkage of its distribution area and the YSCBW served as an oversummering site.
Resumo:
Ti and Ti alloys can be applied to steels as a protective coating in view of its excellent resistance to corrosive environment. Cold spraying, as a new coating technique, has potential advantages in fabrication of Ti coating in comparison with conventional thermal spraying techniques. In this study, Ti coatings were prepared on carbon steel substrates by cold spraying via controlling the process conditions. The microstructure of coatings was observed by SEM. The porosity of coatings was estimated by image analysis and the bond strength was tested for comparison of the process conditions. Potentiodynamic polarization and open-circuit potential (OCP) measurements were performed to understand the corrosion behavior of the coatings. The SEM examination shows that the coatings become more compact with the increases of pressure and temperature of driving gas. The potentiodynamic polarization curves indicate that the coating which has lower porosity has lower corrosion current. The polarization and OCP measurement reveal that cold-sprayed Ti coating can provide favorable protection to carbon steel substrate. The polishing treatment of coating surface polishes the rough outer layer including the small pores as well as decreases the actual surface area of the coating, leading to the considerable improvement of corrosion resistance.
Resumo:
Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
Resumo:
The present study was conducted to determine the effects of supplementary feeds, oat hay (OH), highland barley straw (HBS) and multi-nutrient blocks supplementation (UMMB) on reducing liveweight losses of both yak cows and calves grazed on low quality pastures during cold season. The trials of OH and HBS supplementation were conducted by using completely random design on 104 yak cows between 6 and 12 years of age as the following treatments: pure grazing (41 animals, body weight 230 67 kg) as control (CK); grazing+1.5 kg DM of OH per head daily (30 animals, body weight 216 28 kg); gazing. 1.5 kg DM of HBS per head daily (33 animals, body weight 221 34 kg). The trial of UMMB was conducted on three types of yaks, 1-year calves (8-12 months old, body weight 61.1 6.9 kg), 2-year calves (18-24 months old, 98.0 11.3 kg) and yak cows (164.5 27.1 (S.D.) kg) with 20 animals in control group (CK) and 20 animals in supplement group for each type by using completely random design as the following treatments: pure grazing for CK group; grazing+ 150, 250 and 500 g UMMB per day averagely for 1-year calf, 2-year calf and cow at night. The results indicate that the animals supplemented with oat hay received body weight gain (32 20.7 g day(-1)), while those supplemented with highland barley straw still suffered from body weight loss (-56.7 39.3 a day(-1)); UMMB supplementation can decrease the body weight loss by 109.7%, 86.6% and 63.4% for the 1-year calves, 2-year calves and yak cows, respectively, as compared with pure grazing. Around US$1.60 output can be achieved on the basis of US$1 input for UMMB supplementation in the farming systems of the 1-year calves, 2-year calves and yak cows, while US$1 input can produce US$1.55 and 1.14 output for OH and FIBS supplementations, respectively, in yak cows' farming system. It can be preliminary concluded that UMMB supplementation was the most economic way to alleviate body weight loss of grazing yaks over cold season, and the higher productive returns were obtained from OH supplementation for grazing yak cows during winter/spring months. © 2004 Elsevier B.V All rights reserved.