125 resultados para cohomology group
Resumo:
A novel poly-l-arginine microcapsule was prepared due to its nutritional function and pharmacological efficacy. A high-voltage electrostatic droplet generator was used to make uniform microcapsules. The results show that the membrane strength and permeating property are both remarkably affected with the changes of sodium alginate concentration. With the sodium alginate concentration increasing, gel beads sizes increase from 233 mum to 350 mum, release ratio is also higher at the same time, but the membrane strength decreases.
Resumo:
A new and synthetically versatile strategy has been developed for the phosphorescence color tuning of cyclometalated iridium phosphors by simple tailoring of the phenyl ring of ppy (Hppy=2-phenylpyridine) with various main-group moieties in [Ir(ppy-X)(2)(acac)] (X=B(Mes)(2), SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph). This can be achieved by shifting the charge-transfer character from the pyridyl groups in some traditional iridium ppy-type complexes to the electron-withdrawing main-group moieties and these assignments were supported by theoretical calculations.
Resumo:
The deliberate tailoring of hierarchical flowerlike gold microstructure (HFGMs) at the ultrathin level is an ongoing challenge and could introduce opportunities for new fabrication and application in many fields. In this paper. a templateless, surfactantless, electrochemical strategy for fabrication of ultrathin platinum-group metal coated HFGMs is proposed. HFGMs were prepared by simple electrodeposition on an indium tin oxide (ITO) substrate.
Resumo:
A series of sulfonated polyimides (SPIs) containing pyridine ring in the polymer backbone were synthesized by the polycondensation of 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTDA), 5-(2,6-bis(4-arninophenyl)pyridin-4-yl)-2-methoxy benzene sulfonic acid (SDAM), and 4,4'-diaminodiphenyl ether (ODA). Flexible, transparent, and tough membranes were obtained. Property study revealed that all the membranes displayed high thermal stability with the desulfonation and decomposition temperature higher than 290 and 540 degrees C, respectively, as well as good mechanical property with Young's modulus larger than 1.0 GPa, maximum strength (MS) on a scale of 60-80 MPa, and elongation at break (EB) ranged from 41.79 to 75.17%.
Resumo:
A series of single-component cobalt salen complexes, N,N'-bis(salicylidene)-1,2phenylenediamino cobaltIII X(X = Cl (1a), Br (1b), NO3 (1c), CF3COO (1d), BF4 (le), and N3 (If)) (SalphCoX), were prepared for alternating copolymerization of carbon dioxide and propylene oxide(PO) under mild condition. The axial anion X group of the SalenphCoX played important role in tailoring the catalytic activity, polymeric/cyclic carbonate selectivity, as well as stereochemistry of carbonate unit sequence in the polymer chain. SalenphCoX with an electron-withdrawing axial X group (complex 1c) was an ideal catalyst for the copolymerization of CO2 and PO to selectively produce polycarbonate with similar to 99% carbonate linkage and over 81% head-to-tail structure.
Resumo:
Monte Carlo simulation on the basis of the comblike coarse grained nonpolar/polar (NP) model has been carried out to study the polar group saturation effect on physical gelation of amphiphilic polymer solutions. The effects of polar group saturation due to hydrogen bonding or ion bridging on the sol-gel phase diagram, microstructure of aggregates, and chain conformation of amphiphilic polymer solutions under four different solvent conditions to either the nonpolar backbone or the polar side chain in amphiphilic polymer chains have been investigated. It is found that an increase of polar group saturation results in a monotonically decreased critical concentration of gelation point, which can be qualitatively supported by the dynamic theological measurements on pectin aqueous solutions. Furthermore, various solvent conditions to either the backbone or the side chain have significant impact on both chain conformation and microstructure of aggregates. When the solvent is repulsive to the nonpolar backbone but attractive to the polar side chain, the polymer chains are collapsed, and the gelation follows the mechanism of colloidal packing; at the other solvent conditions, the gelation follows the mechanism of random aggregation.
Resumo:
Previous studies show that aromatic diols inhibited Ru(bpy)(3)(2+) electrochemiluminescence (ECL), and all reported Ru(bpy)(3)(2+) ECL methods for the determination of aromatic diols-containing coreactants are based on inhibition of Ru(bpy)(3)(2+)/tripropylamine ECL. In this study, the interaction between diol and borate anion was exploited for Ru(bpy)(3)(2+) ECL detection of coreactants containing aromatic diol group using epinephrine as a model analyte. The interaction prevented from the inhibition of Ru(bpy)(3)(2+) ECL by aromatic diol group of epinephrine. As a result, epinephrine was successfully detected in the absence of tripropylamine simply by using borate buffer solution as the supporting electrolyte. Under the optimum conditions, the log of the ECL intensity increases linearly with the log of epinephrine concentrations over the concentration range of 1.0x10(-9)-1.0x10(-4) M. The detection limit is 5.0x10(-10) M at a signal-to-noise ratio of three. The proposed method exhibit wider dynamic range and better detection limit than that by inhibited Ru(bpy)(3)(2+) ECL method. The relative standard deviation for 14 consecutive determinations of 5 mu M epinephrine was 3.5%. The strategy by interaction with borate anion or boronate derivatives is promising for the determination of coreactants containing aromatic diol group or aromatic hydroxyl acid group. Such interaction can also be used to avoid interference from aromatic diols or aromatic hydroxyl acids.
Resumo:
Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.
Resumo:
Electrooxidation of thionine on screen-printed carbon electrode gives rise to the modification of the surface with amino groups for the covalent immobilization of enzymes such as horseradish peroxidase (HRP). The biosensor was constructed using multilayer enzymes which covalently immobilized onto the surface of amino groups modified screen-printed carbon electrode using glutaraldehyde as a bifunctional reagent. The multilayer assemble of HRP has been characterized with the cyclic voltammetry and the faradaic impedance spectroscopy. The H2O2 biosensor exhibited a fast response (2 s) and low detection limit (0.5 muM).