149 resultados para cobalt-based catalysts


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The catalytic performances of ZrO2-based catalysts were evaluated for the synthesis of higher alcohols from synthesis gas. The crystal phase structures were characterized by X-ray diffraction (XRD) and UV Raman. The results indicated that ZrO2 and Pd modified ZrO2 catalysts were effective catalysts in the synthesis of ethanol or isobutanol, and their selectivities basically depended on the crystal phase of ZrO2 surface. The ZrO2 with surface tetragonal crystal phase exhibited a high activity to form ethanol, while the ZrO2 with surface monoclinic crystal phase exhibited a high activity to form isobutanol. Temperature-programmed desorption (TPD) experiment indicated that the high activity of isobutanol formation from synthesis gas over monoclinic zirconia was due probably to the strong Lewis acidity of Zr4+ cations and the strong Lewis basicity of O2- anions of coordinative unsaturated Zr4+-O2- pairs on the surface of monoclinic ZrO2. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reduction of NO by CH4 in the presence of excess O-2 over Co/HZSM-5, Ni/HZSM-5 and Mn/HZSM-5 catalysts with microwave heating was studied. By comparing the activities of the catalysts in the microwave heating mode with that in the conventional reaction mode, it was demonstrated that microwave heating could greatly reduce the reaction temperature, and could clearly expand the temperature window of the catalysts. Especially for the Co/HZSM-5 catalyst, the maximum conversion of NO to N-2 in the conventional reaction mode was consistent with that in the microwave heating mode. However, the temperature window for the maximum conversion in the microwave heating mode was from 260 to 360degreesC instead of a temperature of 420degreesC in the conventional reaction mode. The results suggest that microwave heating has a novel effect in the reduction of NO.