85 resultados para characterizations
Resumo:
The crystal structures, electronic spectra, and Cu2p XPS of Cu(III) complexes Na4H[Cu(H2TeO6)(2)]. 17H(2)O and Na4K[Cu(HlO(6))(2)]. 12H(2)O have been described. The characterizations of a Cu(III) atom in a complex are as follows: (i) In a square-planar coordination, the average bond length of Cu-O is 0.183 nm, shorter than the 0.190-0.200 nm found for a Cu(II) complex. (2) The ''blue shift'' occurs for d-d transitions in the electronic spectrum of the Cu(III) complex compared to those of its related Cu(II) complex, resulting from the higher valence state. (3) Cu(III) compounds with CuO4 square-planar coordination are expected to be diamagnetic whereas Cu(II) compounds to be paramagnetic. (4) Comprehensive investigations on Cu2p XPS show that the binding energy of Cu2p(3/2) of a pure Cu(III) compound is about 2.0 eV higher than that of its corresponding Cu(II) compound: the shake-up satellites do not appear in the Cu2p XPS for a pure diamagnetic Cu(III) compound, the same as found for a diamagnetic Ni(II) compound: the FWHM of the signal of Cu2p XPS may become broader for Cu(III) compound because its core hole's lifetime shortens due to the higher valence state of copper. (C) 1995 Academic Press, Inc.
Resumo:
Magnetotactic bacteria (MTB) are ubiquitous in aquatic habitats. Because of their fastidious requirements for growth conditions, only very few axenic MTB cultures have been obtained worldwide. In this study, we report a novel marine magnetotactic spirillum axenic culture, designated as QH-2, isolated from the China Sea. It was able to grow in semi-solid or liquid chemically defined medium. The cells were amphitrichously flagellated and contained one single magnetosome chain with an average number of 16 magnetosomes per cell. Phosphate and lipid granules were also observed in the cells. Both rock magnetism and energy-dispersive X-ray spectroscopy characterizations indicated that the magnetosomes in QH-2 were single-domain magnetites (Fe3O4). QH-2 cells swam mostly in a straight line at a velocity of 20-50 mu m/s and occasionally changed to a helical motion. Unlike other magnetotactic spirilla. QH-2 cells responded to light illumination. As a consequence of illumination, the cells changed the direction in which they swam from parallel to the magnetic field to antiparallel. This response appears to be similar to the effect of an increase in [O-2]. Analysis of the QH-2 16S rRNA sequence showed that it had greater than 11% sequence divergence from freshwater magnetotactic spirilla. Thus, the marine QH-2 strain seems to be both phylogenetically and magnetotactically distinct from the freshwater Magnetospirillum spp. studied previously. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Kinesins are common in a variety of eukaryotic cells with diverse functions. A cDNA encoding a member of the Kinesin-14B subfamily is obtained using X-RACE technology and named AtKP1 (for Arabidopsis kinesin protein 1). This cDNA has a maximum open reading frame of 3.3 kb encoding a polypeptide of 1087 aa. Protein domain analysis shows that AtKP1 contains the motor domain and the calponin homology domain in the central and amino-terminal regions, respectively. The carboxyl-terminal region with 202 aa residues is diverse from other known kinesins. Northern blot analysis shows that AtKP1 is widely expressed at a higher level in seedlings than in mature plants. 2808 bp of the AtKP1 promoter region is cloned and fused to GUS. GUS expression driven by the AtKP1 promoter region shows that AtKP1 is mainly expressed in vasculature of young organs and young leaf trichomes, indicating that AtKP1 may participate in the differentiation or development of Arabidopsis thaliana vascular bundles and trichomes. A truncated AtKP1 protein containing the putative motor domain is expressed in E. coli and affinity-purified. In vitro characterizations indicate that the polypeptide has nucleotide-dependent microtubule-binding ability and microtubule-stimulated ATPase activity.
Resumo:
对当前移动机器人上常用的激光测距仪的性能研究进行了全面的总结。分析了检测SICK、Perceptron、Explorer等常用激光测距仪各方面特性的各种实验结果。根据影响激光测距仪测量性能的方式,把激光测距仪的时变特性、角度偏移、数据传输影响、混合象素现象、色度亮度干扰现象、辐射干扰现象等,分为内因和外因两大类进行了分类讨论。
Resumo:
气溶胶对气候和人类的健康都有重要影响。因此,研究大气总悬浮颗粒物(TSP)的化学组成和物理特性对更深入地了解气溶胶对气候和人类健康的影响具有重要意义。贵阳是中国受燃煤污染比较严重的城市之一,大气中高含量的SO2是其最明显的特征。尽管最近几年空气质量有所改善,但是该区的大气污染问题还比较严重,空气质量仍然不容乐观。我们于2005年1月1日到2005年12月31日在中科院地球化学研究所内全年采集总悬浮颗粒物(TSP)样品,分析测试了其主要无机离子(F-、Cl-、SO42-、NO3-、NH4+、K+、Na+、Ca2+和Mg2+)的化学性质,并结合当地的气象参数(温度,风速,降雨量和相对湿度)系统地研究了TSP及其水溶性无机离子的季节变化特征。本论文的主要结论有: 1. TSP的浓度变化范围为36.91~313.44µg/m3,年均值106.60µg/m3;各离子摩尔浓度的大小顺序为:SO42-> NH4+> Ca2+ > NO3-> K+ > Na+ > Cl- > Mg2+ > F-;SO42- (23.04±12.16µg/m3)和NH4+(3.05±2.23µg/m3)是最主要的离子,分别占总离子摩尔数的37%和30%。TSP及其组分都有明显的季节变化,TSP、Cl-、SO42-、NO3-、NH4+、K+、Na+、Ca2+和Mg2+浓度的冬/夏比值分别为:1.29、5.23、1.35、2.37、1.73、1.22、1.84、1.23和1.02。 2. 温度对TSP及其水溶性无机组分的影响呈现一定的季节变化模式,冬天随温度的升高TSP及其水溶无机组分的浓度也升高,夏天随温度的升高TSP及其水溶性无机组分的浓度降低。但是从全年来看,温度与TSP及其水溶性无机组分之间有弱的负相关性,即随温度的升高,TSP及其水溶性无机组分的浓度有不同程度的下降。相对湿度与TSP及其水溶性无机组分之间存在明显的负相关关系,即随大气相对湿度的增加,TSP及其水溶性无机组分的浓度下降。在相对湿度与TSP及其水溶性无机组分浓度的日变化图中表现为相对湿度的波谷与TSP及其水溶无机组分的浓度的波峰相对应。风速与TSP及其水溶无机组分的浓度之间呈现弱的负相关性。在贵阳,风速对TSP及其水溶无机组分的影响主要表现为扩散作用和稀释作用,由风速导致的尘土再悬浮作用并不明显。雨量对TSP及其水溶性无机组分的影响主要是湿清除作用,具体表现为无雨天TSP及其水溶性无机组分的浓度较雨天高。影响TSP、Ca2+、Mg2+和F-的主要气象参数是相对湿度(RH)和风速,影响SO42-、NO3-、NH4+和Cl-的主要气象参数是温度。 3. 贵阳大气总悬浮颗粒物(TSP)总体偏酸性,TSP水溶液pH值的年均值为6.27±0.41,与总阴离子与总阳离子的当量比Q的年平均值为0.82一致;TSP中高含量的SO42-是贵阳的TSP显酸性的主要原因。 4. NH4+与SO42-和NO3-的相关系数(R)分别为0.85和0.65,NH4+与SO42-的摩尔比值为0.8,说明贵阳TSP中的NH4+主要以(NH4)2SO4的形式存在。Ca2+和Mg2+有较好的相关性(R=0.72)和相似的变化特征,说明二者可能有共同的来源。 5. 2005年贵阳TSP中SO42-/ Ca2+的平均值为13.64,几乎是干净大陆SO42-/ Ca2+的本底值的20倍,说明贵阳的大气污染主要是人为因素所致。NO3-/SO42-的平均值为0.15,说明固定源对贵阳气溶胶的贡献比移动源(通常指交通工具所排放的尾气)对气溶胶的贡献大;
Resumo:
Propylene epoxidation by air was carried out on NaCl-modified silver (NaCl/Ag) catalysts, and the catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effects of NaCl loadings, propylene to oxygen ratio, and the reaction time on the catalytic performance were investigated. It was found that the addition of NaCl to silver significantly increases the propylene oxide (PO) selectivity. The PO yield has a maximum when the NaCl loading is about 10 wt.%. Also 12.4% conversion of propylene and 31.6% selectivity to PO are obtained on the NaCl/Ag (10 wt.%) catalyst at 350 degreesC, space velocity 1.8 x 10(4) h(-1) and C3H6:O-2 = 1:2. XPS and XRD characterizations show that AgCl formed on the silver catalyst was favorable to propylene epoxidation. A compound with highly oxidized Ag ion was also found, which may be effective for the reaction. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Iron-substituted SBA-15 (Fe-SBA-15) materials have been synthesized via a simple direct hydrothermal method under weak acidic conditions. The powder X-ray diffraction (XRD), NZ sorption and transmission electron microscopy (TEM) characterizations show that the resultant materials have well-ordered hexagonal meso-structures. The diffused reflectance UV-vis and UV resonance Raman spectroscopy characterizations show that most of the iron ions exist as isolated framework species for calcined materials when the Fe/Si molar ratios are below 0.01 in the gel. The presence of iron species also has significant salt effects that can greatly improve the ordering of the mesoporous structure. Different iron species including isolated framework iron species, extraframework iron clusters and iron oxides are formed selectively by adjusting the pH values of the synthesis solutions and Fe/Si molar ratios. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A series of PtRu nanocomposites supported on H2O2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods - one used aqueous formaldehyde (HCHO method) and the other used ethylene glycol (EG method) as the reducing agents. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated using N-2 adsorption. TEM. ICP-AES. FTIR and TPD. The wetting heats of the MWCNTs in corresponding solvents were also measured. The characterizations suggest that combination of the surface chemistry of the MWCNTs with the solvents decides the deposition and the dispersion of the metal nanoparticles. These nanocomposites were evaluated as proton exchange membrane fuel cell anode catalyts for oxidation of 50 ppm CO contaminated hydrogen and compared with a commercial PtRu/C catalyst. The data reveal superior performances for the nanocomposites prepared by the EG method to those by the HCHO method and even to that for tile Commercial analogue. Structure performance relationship of the nanocomposites was also studied. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In an attempt to effectively integrate catalytic partial oxidation (CPO) and steam reforming (SR) reactions on the same catalyst, autothermal reforming (ATR) of n-octane was addressed based on thermodynamic analysis and carried out on a non-pyrophoric catalyst 0.3 wt.% Ru/K2O-CeO2/gamma-Al2O3. The ATR of n-octane was more efficient at the molar ratio Of O-2/C 0.35-0.45 and H2O/C 1.6-2.2 (independent parameters), respectively, and reforming temperature of 750-800 degrees C (dependent parameter). Among the sophisticated reaction network, the main reaction thread was deducted as: long-chain hydrocarbon -> CH4, short-chain hydrocarbon -> CO2, CO and H-2 formation by steam reforming, although the parallel CPO, decomposition and reverse water gas shift reaction took place on the same catalyst. Low temperature and high steam partial pressure had more positive effect on CH4 SR to produce CO2 other than CO. This was verified by the tendency of the outlet reformate to the equilibrium at different operation conditions. Furthermore, the loss of active components and the formation of stable but less active components in the catalyst in the harsh ATR atmosphere firstly make the CO inhibition capability suffer, then eventually aggravated the ATR performance, which was verified by the characterizations of X-ray fluorescence, BET specific surface areas and temperature programmed reduction. (c) 2005 Elsevier B.V. All rights reserved.
Improvement of direct methanol fuel cell performance by modifying catalyst coated membrane structure
Resumo:
A five-layer catalyst coated membrane (CCM) based upon Nation 115 membrane for direct methanol fuel cell (DMFC) was designed and fabricated by introducing a modified Nafion layer between the membrane and the catalyst layer. The properties of the CCM were determined by SEM, cyclic voltammetry, impedance spectroscopy, ruinous test and I-V curves. The characterizations show that the modified Nation layers provide increased interface contact area and enhanced interaction between the membrane and the catalyst layer. As a result, higher Pt utilization, lower contact resistance and superior durability of membrane electrode assembly was achieved. A 75% Pt utilization efficiency was obtained by using the novel CCM structure, whereas the conventional structure gave 60% efficiency. All these features greatly contribute to the increase in DMFC performance. The DMFC with new CCM structure presented a maximum power density of 260 MW cm(-2), but the DMFC with conventional structure gave only 200 mW cm(-2) under the same operation condition. (c) 2005 Elsevier B.V. All rights reserved.