180 resultados para catalytic partial oxidation


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction of producing hydrogen for fuel cell which used normal octane as gasoline or diesel oil reactant through catalytic partial oxidizing and steam reforming method has been researched in the fixed-bed reactor. A series of catalysts that mainly used nickel supported on Al2O3 have been studied. It showed that the activity of the catalyst was increased with the content of nickel by using only nickel supported on Al2O3. However, its activity was not obviously increased when the content of nickel was over 5 wt%. The conversion ratio of normal octane and hydrogen selectivity were higher at higher reaction temperature. The single noble catalyst of palladium had better stability compared with that of platinum catalyst although their activity and selectivity were similar during the experimental reaction temperature. The prepared bimetallic catalyst consisted mainly of nickel and little noble metal of palladium supported on Al2O3. It showed that this catalyst had higher activity and selectivity, especially at lower or higher reaction temperatures compared with single nickel or palladium catalyst, and better stability. ((C) 2001 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fuel cells are recognized as the most promising new power generation technology, but hydrogen supply is still a problem. In our previous work, we have developed a LiLaNiO/gamma-Al2O3 catalyst, which is excellent not only for partial oxidation of hydrocarbons, but also for steam reforming and autothermal reforming. However, the reaction needs pure oxygen or air as oxidant. We have developed a dense oxygen permeable membrane Ba0.5Sr0.5Co0.8Fe0.2O3 which has an oxygen permeation flux around 11.5 ml/cm(2) min at reaction conditions. Therefore, this work is to combine the oxygen permeable membrane with the catalyst LiLaNiO/gamma-Al2O3 in a membrane reactor for hydrogen production by mixed reforming of heptane. Under optimized reaction conditions, a heptane conversion of 100%, a CO selectivity of 91-93% and a H-2 selectivity of 95-97% have been achieved. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trichloroisocyanuric acid (TCCA) is a cheap, safe and readily available alternative to the commonly used hydrogen peroxide and hypochlorite for the phase-transfer catalytic epoxidation of alpha,beta-enones under non-aqueous conditions. A variety of chalcone derivatives give the corresponding epoxides with quantitative conversion and satisfactory yields in just a few hours under mild conditions. An asymmetric variant of the epoxidation can be carried out in the presence of chiral N-anthracenylmethylcinchonidine bromide catalyst giving 73-93% ees and 76-94% yields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three types of metal-containing molecular sieves with AFI, AEL and CHA structures (Me = Co, Mn, Cr and V) were synthesized hydrothermally and characterized by XRD, XRF, TG, TPR, NH3-TPD and FT-IR. It was revealed that metals were incorporated into the framework of molecular sieves and induced the presence of charge centers. Both cobalt and manganese in the framework of AIPO-5, AlPO-11 and SAPO-34 were not reducible before the structure collapse. The redox behaviours of these catalysts in cyclohexane oxidation at 403 K using O-2 as oxidant were examined. CoAPO-11 exhibited best activity and good selectivities for the monofunctional oxidation products (88.5%). Cyclohexanol was the major product over most catalysts, whereas for Cr-containing molecular sieves, high selectivity of cyclohexanone was observed. Investigation of reaction mechanism based on CoAPO-11 and CrAPO-5 catalysts indicated that the decomposition of cyclohexyl hydroperoxide (CHHP), the intermediate in cyclohexane oxidation, followed the pathway: cyclohexanone <-- CHHP --> cyclohexanol -->cyclohexanone. (C) 2004 Elsevier B.V. All rights reserved.