130 resultados para bi-layer
Energy transfer and enhanced broadband near-infrared luminescence in Yb-Bi codoped phosphate glasses
Resumo:
In this paper, we apply an analytical model [V.V. Kulagin et al., Phys. Plasmas 14, 113101 (2007)] to describe the acceleration of an ultra-thin electron layer by a schematic single-cycle laser pulse and compare with one-dimensional particle-in-cell (1D-PIC) simulations. This is in the context of creating a relativistic mirror for coherent backscattering and supplements two related papers in this EPJD volume. The model is shown to reproduce the 1D-PIC results almost quantitatively for the short time of a few laser periods sufficient for the backscattering of ultra-short probe pulses.
Resumo:
We propose a simple single-layer magnetic microtrap configuration which can trap an array of magnetically-trapped Bose-Einstein condensate. The configuration consists of two series of parallel wires perpendicular to each other and all of the crossing points are cut off for maintaining the uniformity of the current. We analyse the trapping potential, the position of trapping centres and the uniformity of the array of the traps. The trapping depth and trapping frequency with different parameters are also calculated. Lastly, the effect of the cut-off crossing points, dissipate power, chip production are introduced concisely.
Resumo:
The absorption spectra and upconversion fluorescence spectra of Er3+/-Yb3+-codoped natrium-gallium-germanium-bismuth glasses are measured and investigated. The intense green (533 and 549 nm) and red (672 nm) emission bands were simultaneously observed at room temperature. The quadratic dependence of the green and red emission on excitation power indicates that the two-photon absorption processes occur. The influence of Ga2C3 on upconversion intensity is investigated. The intensity of green emissions increases slowly with increasing Ga2O3 content, while the intensity of red emission increases significantly. The possible upconversion mechanisms for these glasses have also been discussed. The maximum phonon energy of the glasses determined based on the infrared (IR) spectral analysis is as low as 740 cm(-1). The studies indicate that Bi2O3-GeO2-Ga2O3-Na2O glasses may be potential materials for developing upconversion optical devices (c) 2006 Published by Elsevier B.V.
Polaring beam splitter of two-layer dielectric rectangular transmission gratings in Littrow mounting
Resumo:
A theoretical method to analyze four-layer large flattened mode (LFM) fibers is presented. The influence of the second cladding on the properties of four-layer LFM fiber, including the fundamental and higher-order modal fields, effective area, bending loss, and dispersion, are studied by comparison. At the same time, the reasons for the different characteristics are considered. The obtained results indicate that the effective area of the four-layer LFM fiber is about 1.6 times larger than that of the conventional standard step-index fiber and the fibers have better bend-induced filtering ability than three-layer LFM fibers. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Theoretical method to analyze three-layer large flattened mode (LFM) fibers is presented. The modal fields, including the fundamental and higher order modes, and bending loss of the fiber are analyzed. The reason forming the different modal fields is explained and the feasibility to filter out the higher order modes via bending to realize high power, high beam quality fiber laser is given. Comparisons are made with the standard step-index fiber. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A theoretical method to analyze four-layer large flattened mode (LFM) fibers is presented. The influence of the second cladding on the properties of four-layer LFM fiber, including the fundamental and higher-order modal fields, effective area, bending loss, and dispersion, are studied by comparison. At the same time, the reasons for the different characteristics are considered. The obtained results indicate that the effective area of the four-layer LFM fiber is about 1.6 times larger than that of the conventional standard step-index fiber and the fibers have better bend-induced filtering ability than three-layer LFM fibers. (C) 2007 Society of Photo-Optical Instrumentation Engineers.