181 resultados para backward simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct numerical simulation of transition How over a blunt cone with a freestream Mach number of 6, Reynolds number of 10,000 based on the nose radius, and a 1-deg angle of attack is performed by using a seventh-order weighted essentially nonoscillatory scheme for the convection terms of the Navier-Stokes equations, together with an eighth-order central finite difference scheme for the viscous terms. The wall blow-and-suction perturbations, including random perturbation and multifrequency perturbation, are used to trigger the transition. The maximum amplitude of the wall-normal velocity disturbance is set to 1% of the freestream velocity. The obtained transition locations on the cone surface agree well with each other far both cases. Transition onset is located at about 500 times the nose radius in the leeward section and 750 times the nose radius in the windward section. The frequency spectrum of velocity and pressure fluctuations at different streamwise locations are analyzed and compared with the linear stability theory. The second-mode disturbance wave is deemed to be the dominating disturbance because the growth rate of the second mode is much higher than the first mode. The reason why transition in the leeward section occurs earlier than that in the windward section is analyzed. It is not because of higher local growth rate of disturbance waves in the leeward section, but because the growth start location of the dominating second-mode wave in the leeward section is much earlier than that in the windward section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most simulations of random sphere packing concern a cubic or cylindric container with periodic boundary, containers of other shapes are rarely studied. In this paper, a new relaxation algorithm with pre-expanding procedure for random sphere packing in an arbitrarily shaped container is presented. Boundaries of the container are simulated by overlapping spheres which covers the boundary surface of the container. We find 0.4 similar to 0.6 of the overlap rate is a proper value for boundary spheres. The algorithm begins with a random distribution of small internal spheres. Then the expansion and relaxation procedures are performed alternately to increase the packing density. The pre-expanding procedure stops when the packing density of internal spheres reaches a preset value. Following the pre-expanding procedure, the relaxation and shrinking iterations are carried out alternately to reduce the overlaps of internal spheres. The pre-expanding procedure avoids the overflow problem and gives a uniform distribution of initial spheres. Efficiency of the algorithm is increased with the cubic cell background system and double link data structure. Examples show the packing results agree well with both computational and experimental results. Packing density about 0.63 is obtained by the algorithm for random sphere packing in containers of various shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation and mechanical properties of amorphous copper are studied using molecular dynamics simulation. The simulations of tension and shearing show that more pronounced plasticity is found under shearing, compared to tension. Apparent strain hardening and strain rate effect are observed. Interestingly, the variations of number density of atoms during deformation indicate free volume creation, especially under higher strain rate. In particular, it is found that shear induced dilatation does appear in the amorphous metal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of large-eddy simulation (LES) to turbulent transport processes requires accurate prediction of the Lagrangian statistics of flow fields. However, in most existing SGS models, no explicit consideration is given to Lagrangian statistics. In this paper, we focus on the effects of SGS modeling on Lagrangian statistics in LES ranging from statistics determining single-particle dispersion to those of pair dispersion and multiparticle dispersion. Lagrangian statistics in homogeneous isotropic turbulence are extracted from direct numerical simulation (DNS) and the LES with a spectral eddy-viscosity model. For the case of longtime single-particle dispersion, it is shown that, compared to DNS, LES overpredicts the time scale of the Lagrangian velocity correlation but underpredicts the Lagrangian velocity fluctuation. These two effects tend to cancel one another leading to an accurate prediction of the longtime turbulent dispersion coefficient. Unlike the single-particle dispersion, LES tends to underestimate significantly the rate of relative dispersion of particle pairs and multiple-particles, when initial separation distances are less than the minimum resolved scale due to the lack of subgrid fluctuations. The overprediction of LES on the time scale of the Lagrangian velocity correlation is further confirmed by a theoretical analysis using a turbulence closure theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the laser induced thermal fatigue simulation test on pistons, the high power laser was transformed from the incident Gaussian beam into a concentric multi-circular pattern with specific intensity ratio. The spatial intensity distribution of the shaped beam, which determines the temperature field in the piston, must be designed before a diffractive optical element (DOE) can be manufactured. In this paper, a reverse method based on finite element model (FEM) was proposed to design the intensity distribution in order to simulate the thermal loadings on pistons. Temperature fields were obtained by solving a transient three-dimensional heat conduction equation with convective boundary conditions at the surfaces of the piston workpiece. The numerical model then was validated by approaching the computational results to the experimental data. During the process, some important parameters including laser absorptivity, convective heat transfer coefficient, thermal conductivity and Biot number were also validated. Then, optimization procedure was processed to find favorable spatial intensity distribution for the shaped beam, with the aid of the validated FEM. The analysis shows that the reverse method incorporated with numerical simulation can reduce design cycle and design expense efficiently. This method can serve as a kind of virtual experimental vehicle as well, which makes the thermal fatigue simulation test more controllable and predictable. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) is used to study flow characteristics after interaction of a planar shock with a spherical media interface in each side of which the density is different. This interfacial instability is known as the Richtmyer-Meshkov (R-M) instability. The compressible Navier-Stoke equations are discretized with group velocity control (GVC) modified fourth order accurate compact difference scheme. Three-dimensional numerical simulations are performed for R-M instability installed passing a shock through a spherical interface. Based on numerical results the characteristics of 3D R-M instability are analysed. The evaluation for distortion of the interface, the deformation of the incident shock wave and effects of refraction, reflection and diffraction are presented. The effects of the interfacial instability on produced vorticity and mixing is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first-passage failure of quasi-integrable Hamiltonian si-stems (multidegree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is investigated. The motion equations of such a system are first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving these equations with suitable initial and boundary conditions. Two examples are given to illustrate the proposed procedure and the results from digital simulation are obtained to verify the effectiveness of the procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer simulation was performed to explore the features and effects of sedimentation on rapid coagulation. To estimate the accumulated influence of gravity on coagulation for dispersions, a sedimentation influence ratio is defined. Some factors possibly related to the influence of sedimentation were considered in the simulation and analysed by comparing the size distribution of aggregates, the change in collision number, and coagulation rates at different gravity levels (0 g, 1 g and more with g being the gravitational constant).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first-passage time of Duffing oscillator under combined harmonic and white-noise excitations is studied. The equation of motion of the system is first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. Numerical results for two resonant cases with several sets of parameter values are obtained and the analytical results are verified by using those from digital simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gas flows in micro-electro-mechanical systems possess relatively large Knudsen number and usually belong to the slip flow and transitional flow regimes. Recently the lattice Boltzmann method (LBM) was proposed by Nie et al. in Journal of Statistical Physics, vol. 107, pp. 279-289, in 2002 to simulate the microchannel and microcavity flows in the transitional flow regime. The present article intends to test the feasibility of doing so. The results of using the lattice Boltzmann method and the direct simulation Monte Carlo method show good agreement between them for small Kn (Kn = 0.0194), poor agreement for Kn = 0.194, and large deviation for Kn = 0.388 in simulating microchannel flows. This suggests that the present version of the lattice Boltzmann method is not feasible to simulate the transitional channel flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of subgrid-scale (SGS) modeling on velocity (space-) time correlations is investigated in decaying isotropic turbulence. The performance of several SGS models is evaluated, which shows superiority of the dynamic Smagorinsky model used in conjunction with the multiscale large-eddy simulation (LES) procedure. Compared to the results of direct numerical simulation, LES is shown to underpredict the (un-normalized) correlation magnitude and slightly overpredict the decorrelation time scales. This can lead to inaccurate solutions in applications such as aeroacoustics. The underprediction of correlation functions is particularly severe for higher wavenumber modes which are swept by the most energetic modes. The classic sweeping hypothesis for stationary turbulence is generalized for decaying turbulence and used to analyze the observed discrepancies. Based on this analysis, the time correlations are determined by the wavenumber energy spectra and the sweeping velocity, which is the square root of the total energy. Hence, an accurate prediction of the instantaneous energy spectra is most critical to the accurate computation of time correlations. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressible Navier-Stokes equations discretized with a fourth order accurate compact finite difference scheme with group velocity control are used to simulate the Richtmyer-Meshkov (R-M) instability problem produced by cylindrical shock-cylindrical material interface with shock Mach number Ms = 1.2 and density ratio 1:20 (interior density/outer density). Effect of shock refraction, reflection, interaction of the reflected shock with the material interface, and effect of initial perturbation modes on R-M instability are investigated numerically. It is noted that the shock refraction is a main physical mechanism of the initial phase changing of the material surface. The multiple interactions of the reflected shock from the origin with the interface and the R-M instability near the material interface are the reason for formation of the spike-bubble structures. Different viscosities lead to different spike-bubble structure characteristics. The vortex pairing phenomenon is found in the initial double mode simulation. The mode interaction is the main factor of small structures production near the interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the issues of modeling, numerical methods, and simulation with comparison to experimental data for the particle-fluid two-phase flow problem involving a solid-liquid mixed medium. The physical situation being considered is a pulsed liquid fluidized bed. The mathematical model is based on the assumption of one-dimensional flows, incompressible in both particle and fluid phases, equal particle diameters, and the wall friction force on both phases being ignored. The model consists of a set of coupled differential equations describing the conservation of mass and momentum in both phases with coupling and interaction between the two phases. We demonstrate conditions under which the system is either mathematically well posed or ill posed. We consider the general model with additional physical viscosities and/or additional virtual mass forces, both of which stabilize the system. Two numerical methods, one of them is first-order accurate and the other fifth-order accurate, are used to solve the models. A change of variable technique effectively handles the changing domain and boundary conditions. The numerical methods are demonstrated to be stable and convergent through careful numerical experiments. Simulation results for realistic pulsed liquid fluidized bed are provided and compared with experimental data. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure for designing the optimal bounded control of strongly non-linear oscillators under combined harmonic and white-noise excitations for minimizing their first-passage failure is proposed. First, a stochastic averaging method for strongly non-linear oscillators under combined harmonic and white-noise excitations using generalized harmonic functions is introduced. Then, the dynamical programming equations and their boundary and final time conditions for the control problems of maximizing reliability and of maximizing mean first-passage time are formulated from the averaged Ito equations by using the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraint. Finally, the conditional reliability function, the conditional probability density and mean of the first-passage time of the optimally controlled system are obtained from solving the backward Kolmogorov equation and Pontryagin equation. An example is given to illustrate the proposed procedure and the results obtained are verified by using those from digital simulation. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations of nanoindentation are performed on monocrystal copper. A new "contact atoms" method is presented for calculating the contact area. Compared with conventional methods, this method can provide the contact area more accurately not only for sink-in but also for pile-up situation. The effect of tip radius on indentation is investigated too. The results indicate that the measured hardness of the material will become higher as the tip radius increases.