153 resultados para arsenite, leiteite, reinerite, Raman Spectroscopy, single crystal
Resumo:
Isolated transition metal ions/oxides in molecular sieves and on surfaces are a class of active sites for selective oxidation of hydrocarbons. Identifying the active sites and their coordination structure is vital to understanding their essential role played in catalysis and designing and synthesizing more active and selective catalysts. The isolated transition metal ions in the framework of molecular sieves (e.g., TS-1, Fe-ZSM-5, and V-MCM-41) or on the surface of oxides (e.g., MoO3/Al2O3 and TiO2/SiO2) were successfully identified by UV resonance Raman spectroscopy. The charge transfer transitions between the transition metal ions and the oxygen anions are excited by a UV laser and consequently the UV resonance Raman effect greatly enhances the Raman signals of the isolated transition metal ions. The local coordination of these ions in the rigid framework of molecular sieves or in the relatively flexible structure on the surface can also be differentiated by the shifts of the resonance Raman bands. The relative concentration of the isolated transition metal ion/oxides could be estimated by the intensity ratio of Raman bands. This study demonstrates that the UV resonance Raman spectroscopy is a general technique that can be widely applied to the in-situ characterization of catalyst synthesis and catalytic reactions. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The phase evolution of yttrium oxide and lanthanum oxide doped zirconia (Y2O3-ZrO2 and La2O3-ZrO2, respectively) from their tetragonal to monoclinic phase has been studied using UV Raman spectroscopy, visible Raman spectroscopy and XRD. UV Raman spectroscopy is found to be more sensitive at the surface region while visible Raman spectroscopy and XRD mainly give the bulk information. For Y2O3-ZrO2 and La2O3-ZrO2, the transformation of the bulk phase from the tetragonal to the monoclinic is significantly retarded by the presence of yttrium oxide and lanthanum oxide. However, the tetragonal phase in the surface region is difficult to stabilize, particularly when the stabilizer's content is low. The phase in the surface region can be more effectively stabilized by lanthanum oxide than yttrium oxide even though zirconia seemed to provide more enrichment in the surface region of the La2O3-ZrO2 sample than the Y2O3-ZrO2 sample, based on XPS analysis. The surface structural tension and the enrichment of the ZrO2, component in the surface region of ZrO2-Y2O3 and ZrO2-La2O3 might be the reasons for the striking difference between the phase change in the surface region and the bulk. Accordingly, the stabilized tetragonal surface region can significantly prevent the phase transition from developing into the bulk when the stabilizer's content is high.
Resumo:
A new and facile method to prepare large-area silver-coated silicon nanowire arrays for surface-enhanced Raman spectroscopy (SERS)-based sensing is introduced. High-quality silicon nanowire arrays are prepared by a chemical etching method and used as a template for the generation of SERS-active silver-coated silicon nanowire arrays. The morphologies of the silicon nanowire arrays and the type of silver-plating solution are two key factors determining the magnitude of SERS signal enhancement and the sensitivity of detection; they are investigated in detail for the purpose of optimization.
Resumo:
Single-crystal-like organic heterojunction films of copper phthalocyanine (CuPc) and copper-hexadecafluoro-phthalocyanine (F16CuPc) were fabricated by weak-epitaxy-growth method. The intrinsic properties of organic heterojunction were revealed through threshold voltage shift of field-effect transistors and measurement of single-crystal-like diodes. At both sides of the heterojunction interface 40 nm thick charge accumulation layers formed, which showed that the long carriers' diffusion length is due to the high crystallinity and low density of deep bulk traps of single-crystal-like films.
Resumo:
Single-crystal tubular products on the millimetre scale have been synthesized from water-soluble calixarene and phenanthroline in the presence of lanthanides by a hydrothermal method, in which the extended structures contain some 1D infinite channels.
Resumo:
Catalytic degradation of organic dye molecules has attracted extensive attention due to their high toxicity to water resources. In this paper, we propose a novel method for the fabrication of uniform silver-coated ZnO nanowire arrays. The degradation of typical dye molecule rhodamine 6G (R6G), as an example, is investigated in the presence of the as-prepared silver-coated ZnO nanowire arrays. The experimental results show that such composite nanostructures exhibit high catalytic activity, and the reaction follows pseudo-first-order kinetics. Furthermore, these nanowire arrays are desirable SERS substrates for monitoring the catalytic degradation of dye molecules. Compared with traditional UV-visible spectroscopy, SERS technology can reflect more truly the catalytic degradation process occurring on the surface of the catalysts.
Resumo:
In this contribution, we report a facile, gram-scale, low-cost route to prepare monodisperse superparamagnetic single-crystal magnetite NPs with mesoporous structure (MSSMN) via a very simple solvothermal method. The formation mechanism of MSSMN is also discussed and we think that Ostwald ripening probably plays an important role in this synthesis process. It is also interestingly found that the size and morphology of mesoporous Fe3O4 NPs can be easily controlled by changing the amount of NaOH and 1,2-ethylenediamine (ETH). Most importantly, the MSSMN can be used as an effective drug delivery carrier. A typical anticancer drug, doxorubicin (Dox), is used for drug loading, and the release behaviors of Dox in two different pH solutions are studied. The results indicate that the MSSMN has a high drug loading capacity and favorable release property for Dox; thus, it is very promising for the application in drug delivery.
Resumo:
Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (similar to 25 nm).
Resumo:
The shape-con trolled synthesis of micrometer- sized gold nanocoralline was simply realized via a wet-chemical approach. The as-prepared hierarchical gold nanocorallines (HGNs) on the solid substrate were initially applied in SERS analysis with 4-aminothiophenol (4-ATP) as the probe molecule. The HGN-modified glass substrate exhibits a higher SERS effect (one order of magnitude higher) than the aggregated gold nanoparticle (similar to 25 nm)-modified glass substrate.
Resumo:
Using low-temperature hydrothermal methods, nanoscale lanthanide phenylphosphonates species with different morphologies, namely, nanoparticles and nanorods, have been systematically synthesized. The possible growth mechanism of these nanorods was discussed. X-ray diffraction, transmission electron microscopy, electron diffraction, and photoluminescence spectra were used to characterize these materials. The photoluminescent properties of EU(O3PC6H5)(HO3PC6H5) and La0.91EU0.09(O3PC6H5)(HO3PC6H5) nanorods were discussed.
Resumo:
We describe the small-biomolecule ( glycyl glycine)-directed synthesis of single-crystalline silver nanoplates, and different experimental conditions have been explored for a more thorough understanding of the growth mechanism. The yield of silver nanoplates relative to the total number of nanoparticles formed was as high as similar to 80%. It was found that the ratio of glycyl glycine to AgNO3 was the key to forming Ag nanoplates.
Resumo:
The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.
Resumo:
A new orthorhombic phase of BaEu2Mn2O7 with the space group of Ccmm (no.63) was identified for single crystals after heat treatment and its Crystal Structure was determined by single crystal X-ray diffractometry. The volume Of the unit cell has twice the fundamental tetragonal cell and corner-shared MnO6 octahedra are slightly distorted and Mn-O-Mn angle between the neighboring octahedra tilts with an angle by around 3 degrees from b-axis. It is concluded from the results of the heat treatment of single crystals at various temperatures that this orthorhombic phase changes into a tetragonal One With superstructure (P4(2)/mnm) at 402 K and changes once more into the fundamental tetragonal phase (I4/mmm) above 552 K. The tetragonal phase with superstructure which has been expected to be an unstable one is stable between the two temperatures.