89 resultados para Wetland conservation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

中国拥有92466 Km2的各类高原湿地,具有湿地退化、过度放牧等相似特征,保护与利用矛盾突出。高寒湿地保护区尽管在制度上以核心区、缓冲区来约束当地的放牧等外来干扰行为,但在实际管理中却不能起到应有的作用。 本研究以四川若尔盖湿地国家级自然保护区为例,应用3S技术,建立保护区多功能动态分区工作流模型,通过不同植被类型的识别和空间特征分析、不同动物类群在上述植被生境中的时空分布特征分析、保护区主要干扰因素的时空分布特征分析,突出对保护区主要保护对象(湿地生态系统)的保护,对保护区进行管理分区,依据野生动物利用特征和植被生长特征对核心区进行年周期动态利用,缓解保护与发展的矛盾,促进保护区的优化管理。 应用归一化植被指数(NDVI)与植被盖度的相关性,将归一化植被指数(NDVI)转化为植被盖度指数(MDVI),结合保护区牧场划分和时空利用特征专家经验,结果表明,MDVI值在1-139之间主要代表着水体、裸地、沙地等;MDVI140-256为草地和高山灌丛;MDVI210是当地夏牧场和秋冬牧场的划分区间值。 合理的区划需要资金、技术和政策的支持,为保证保护区多核心动态分区的实施,本研究提出了生态工程、牧业发展方式转变、湿地特色产业发展、湿地政策、社区参与和科技支撑等六大保障措施。 In China, 92466 Km2 highland or frigid wetlands are (were) facing major management problems, such as wetland degradation and overgazing. Conflict between conservation and utilization on those wetlands can be found anywhere today. Although many nature reserves have been setup for protection of frigid wetland, and core and buffer zone has been declared to forbid any kinds of disturbance, local farmers still use these areas for grazing. As an example by Sichuan Roige Wetlands National Nature Reserve(SRWNRR), we set up a 3S flow model to analyze the character of year-round distribution patters of vegetation, wildlife, and grazing. Combined and overlapped these characters together, we select multi-core zone and buffer zone, then define a dynamic management period in different zone to optimize protection wetland in the reserve. Normalized Difference Vegetation Index(NDVI)is highly related with coverage of vegetation. When convert NDVI to MDVI (coverage index, 1-256), index 139 and 210 can be as inflexion to distinguish among water/sand/bared land, summer pasture, and autumn / winter pasture. We use these to select different layers and analyze grazing pattern. To be more realistic, we put forward some strategies to support our multi-core and dynamic management of wetland in Roige, including ecological restoration engineering, changing of stock raising industry, changing of wetland policy, community based management and technology renovation supports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文考察了若尔盖高寒泥炭湿地公路对高原林蛙(Rana kukunoris)、倭蛙(Narorana pleskei)和岷山蟾蜍(Bufo minshanicus)的生态影响。分析了公路对两栖动物空间分布和栖息地利用的影响,并用IBM模型探讨其可能作用机制,考察了两栖动物公路死亡的季节差异及影响公路死亡空间分布的景观因素。最后通过对若尔盖高寒湿地两栖动物陆地核心栖息地的分析,为若尔盖路域栖息地的管理提供依据。 1. 对公路周边6个沼泽水凼群进行了调查,每个样地设置5条样线(距离公路10m、20m、50m、100m和150m)。调查表明,在繁殖季节(5月),距离公路距离对高原林蛙和倭蛙的相对数量都有显著作用,其效应明显大于其他各项栖息地环境参数。公路导致高原林蛙和倭蛙在公路周边种群密度降低,其相对数量从距离公路100m处到公路边缘一直呈现逐渐降低的趋势。在繁殖季节,若尔盖高寒湿地的公路生态影响域大约在100-150m之间,这一距离远远大于森林栖息地中公路对两栖类的生态影响域(35-40 m)。 在繁殖后期(9月),对公路周边16个草地样点的样线调查表明,公路对周边高原林蛙和倭蛙密度分布并未造成显著影响。 2. 二次模型的拟合表明繁殖季节高原林蛙和倭蛙在公路周边的密度分布符合钟型曲线。前人对森林公路两侧两栖类分布的研究也显示了类似的规律。我们通过基于个体的模型,模拟在了公路边缘100单位距离内的栖息地空间,栖息地环境质量呈梯度变化,动物个体在其中通过随机运动寻找适宜的栖息地。拟合结果表明,动物个体仅仅依照简单的运动规则寻找适宜栖息地,这种活动就可以导致公路周边栖息地中的动物分布曲线出现3个局部峰。公路周边两栖动物的钟型分布曲线可能仅仅是个体寻找适宜栖息地过程中出现的临时性群体分布模式。 3. 在若尔盖高寒湿地,公路交通造成了大量两栖类死亡。但是公路两栖类动物死亡的季节分布很不均匀:5月、8月和9月死亡数量很高,而7月和10月死亡数量却很低。这种季节性差异和两栖类各个生活史阶段的迁移运动有密切的关系。利用景观参数的逻辑斯蒂回归模型显示,距离公路1000-2000m范围内的湿草地比例对三种两栖类公路死亡概率均有很强的贡献。湿草地这一栖息地类型分类中有大量的沼泽水体,是两栖类重要的繁殖点和取食点。两栖类公路死亡概率湿草地的关系从一个侧面表明,要维持一个区域较高的两栖类种群数量,需要1000-2000m半径范围内存在大面积的湿草地。 4. 高原林蛙和岷山蟾蜍不同性别和年龄个体分布点的水体距离存在显著差异。不同种类、年龄的两栖类分布点距离水体距离的差异可能是由于对水体的依赖性造成的。而相同种类、年龄段的个体中,高原林蛙雌性、岷山蟾蜍亚成体和雌性的体重与分布点距水体距离有显著负相关,这可能是因为体重更大的个体对水体的依赖性更弱。考虑到过大的陆地核心栖息地面积在实际保护工作中存在操作上的困难,因此我们认为可以以水体周边90%个体的分布区为低限确定3种两栖类的最小陆地核心栖息地。但是,在同样的水体距离-两栖类密度分布格局下,水体的面积和分形参数对最小陆地核心栖息地半径的确定有一定影响。 Ecological effects of alpine wetland road on Rana kukunoris, Narorana pleskei, Bufo minshanicus was studied in Zoige wetland. The effects of road on distribution of amphibians and its possible underline mechanism was discussed based on empirical data and computer simulation. Road killed amphibians was surveyed in different season and those landscape factor which could have impact on road killing distribution was analyses. Core terrestrial habitat of amphibians in Zoige wetland was discussed in the consideration of conservation management. 1. Six pool groups was investigated in breeding season (May) of R. kukunoris, N. pleskei. Five transects at distance of 10m, 20m, 50m, 100m and 150m from road edge was surveyed in each pool groups. There was a significant effects of distance from road edge on relative counts of R. kukunoris, N. pleskei, which is much important than effects of other environmental factors. Road caused the density of R. kukunoris, N. pleskei decreased from distance of 100m from road to 10m from road. Road ecological effect zone of alpine wetland for amphibians is about 100-150m. It is much wider than those of forest roads, which is about 35-40m. However, studies on 16 grassland near road showed no significant effect of road on amphibians after breeding season (Sep.). 2. Quadratic model fit indicated that the distribution of R. kukunoris and N. Pleskei followed a hump like curve. Previous studies on forest road showed similar results. A 100×100 habitat with gradual environment besides road was simulated with a individual-based model, and animal seek for suitable habitat with stochastic locomotion in it. Simulation results indicated that 3 density peak of animal distribution can emergent followed a simply rules. The hump like density cure could be a temporal swarm pattern during the process of individual seeking for habitat. 3. Road traffic caused mass death of amphibians in Zoige wetland. There was much road killed amphibians in May, Aug and Sep than those in July and Oct. The fluctuation of road kill could be related with migration of amphibians between seasons. Logistic regression of landscape variables indicated that wet grassland in 1000-2000m is essential to predict the probability of road kill. Wet grassland is an important breeding and forage habitat for amphibians. It also indicated that mass wet grassland in 1000-2000m is essential for maintain a big amphibian population. 4. There was significant differences among distance from aquatic site of subadults, female and males of R. kukunoris and B. Minshanicus. Possibly, it was because of their dependence on water. There was a significant negative relationship between distance from aquatic site and individuals body mass. Estimates of core habitat that are too large may make it difficult to establish protective regulations. The smallest suitable terrestrial core habitats were defined as the terrestrial habitats used during migration to and from the wetlands, and for foraging by 90% of any life stage (adults, and subadults) in a season. However, even with the same amphibian distribution pattern along the distance from aquatic sites, the radii of smallest suitable terrestrial core habitats will be varied with the fractal parameters of aquatic site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conservation of species requires preservation of natural habitats,where the integrity of natural habitats has been severely disturbed and species goes extinct. All natural habitats are continuing to decline both inside and outside of reserves. Habitat change is partly a natural process (e.g., succession), but human activities have accelerated the process so that natural rate of renewal is insufficient to maintain natural habitats. This paper provided concept, methods of habitat renewal, habitat mitigation and their implication to protection and exploitation of natural resource. We argue that our only resourse, in light of these scenarios, is to adopt a new conservation strategy that considers the importance of habitat renewal and habitat mitigation in addition to habitat preservation. Accordingly, in our management decision, we must not only choose the size of area to preserve ,but also the size of area to balance habitat loss with habitat renewal or habitat mitigation. Finally, we explored the application of habitat renewal and habitat mitigation in regional sustainable development of Liaohe Delta wetland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four models are employed in the landscape change detection of the newly created wetland. The models include ones for patch connectivity. ecological diversity, human impact intensity and mean center of land cover. The landscape data of the newly created wetland in Yellow River Delta in 1984, 1991, and 1996 are produced from the unsupervised classification and the supervised classification on the basis of integrating Landsat TM images of the newly created wetland in the four seasons of the each year. The result from operating the models into the data shows that the newly created wetland landscape in Yellow River Delta had a great chance. The driving focus of the change are mainly from natural evolution of the newly created wetland and rapid population growth, especially non-peasant population growth in Yellow River Delta because a considerable amount of oil and gas fields have been found in the Yellow River Delta. For preventing the newly created wetland from more destruction and conserving benign Succession of the ecosystems in the newly created wetland, six measures are suggested on the basis of research results. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Key Technology RD Program [2006BAD03A02]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need to obtain the hydrologic data including ocean current, wave, temperature and so on in the South China Sea. A new profiling instrument which does not suffer from the damage due to nature forces or incidents caused by passing ships, is under development to acquire data from this area. This device is based on a taut single point mid-water mooring system. It incorporates a small, instrumented vertically profiling float attached via an electromechanical cable to a winch integral with the main subsurface flotation. On a pre-set schedule, the instrument float with sensors is winched up to the surface if there is no strip passing by, which is defined by an on-board miniature sonar. And it can be immediately winched down to a certain depth if the sonar sensor finds something is coming. Since, because Of logistics, the area can only be visited once for a long time and a minimum of 10 times per day profiles are desired, energy demands are severe. To respond to these concerns, the system has been designed to conserve a substantial portion of the potential energy lost during the ascent phase of each profile and subsequently use this energy to pull the instrument down. Compared with the previous single-point layered measuring mode, it is advanced and economical. At last the paper introduces the test in the South China Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the Qinghai-Tibet plateau increased livestock numbers have resulted in degradation of the grasslands with potential impacts on native biodiversity. Concurrently, perceived increases in populations of native small mammals such as plateau pikas (Ochotona curzoniae) have led to poisoning programs, with uncertain impacts on species such as ground-nesting birds. We explored the relationships between the local seasonal abundance of small birds and (1) the density of pika burrows; (2) livestock grazing practices; and (3) local poisoning of pikas. Around Naqu prefecture, central Tibet, we used a nested experimental design to collect data from areas rested from grazing over summer, nearby areas with year-round grazing and areas subjected to pika poisoning. Additional data were collected from a site where grazing had not occurred for at least 4 years prior to the study. Poisoning pikas in spring had no detectable effect on the local abundance of birds the following autumn. However, two ground-nesting species, white-rumped and rufous-necked snowfinches, showed positive associations with the density of pika burrows, indicating that long-term 'pika poisoning could reduce the density of these species by reducing the density of pika burrows. Rufous-necked snowfinches and non ground-nesting species including horned larks and common hoopoes showed positive responses to reduced grazing pressure from livestock, particularly in the long-rested site, indicating current grazing levels could be having a negative impact on these species. Conservation of small passerine biodiversity in this system will require changed management practices for livestock and pikas that consider the complex three-way interaction between livestock grazing, pikas and small birds. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To initially describe vegetation structure and spatial variation in plant biomass in a typical alpine wetland of the Qinghai-Tibetan Plateau, net primary productivity and vegetation in relationship to environmental factors were investigated. In 2002, the wetland remained flooded to an average water depth of 25 cm during the growing season, from July to mid-September. We mapped the floodline and vegetation distribution using GPS (global positioning system). Coverage of vegetation in the wetland was 100%, and the vegetation was zonally distributed along a water depth gradient, with three emergent plant zones (Hippuris vulgaris-dominated zone, Scirpus distigmaticus-dominated zone, and Carex allivescers-dominated zone) and one submerged plant zone (Potamogeton pectinatus-dominated zone). Both aboveground and belowground biomass varied temporally within and among the vegetation zones. Further, net primary productivity (NPP) as estimated by peak biomass also differed among the vegetation zones; aboveground NPP was highest in the Carex-dominated zone with shallowest water and lowest in the Potamogeton zone with deepest water. The area occupied by each zone was 73.5% for P. pectinatus, 2.6% for H. vulgaris, 20.5% for S. distigmaticus, and 3.4% for C. allivescers. Morphological features in relationship to gas-transport efficiency of the aerial part differed among the emergent plants. Of the three emergent plants, H. vulgaris, which dominated in the deeper water, showed greater morphological adaptability to deep water than the other two emergent plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To initially characterize the dynamics and environmental controls of CO2, ecosystem CO2 fluxes were measured for different vegetation zones in a deep-water wetland on the Qinghai-Tibetan Plateau during the growing season of 2002. Four zones of vegetation along a gradient from shallow to deep water were dominated, respectively by the emergent species Carex allivescens V. Krez., Scirpus distigmaticus L., Hippuris vulgaris L., and the submerged species Potamogeton pectinatus L. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) were markedly different among the vegetation zones, with lower Re and GPP in deeper water. NEP was highest in the Scirpus-dominated zone with moderate water depth, but lowest in the Potamogeton-zone that occupied approximately 75% of the total wetland area. Diurnal variation in CO2 flux was highly correlated with variation in light intensity and soil temperature. The relationship between CO2 flux and these environmental variables varied among the vegetation zones. Seasonal CO2 fluxes, including GPP, Re, and NEP, were strongly correlated with aboveground biomass, which was in turn determined by water depth. In the early growing season, temperature sensitivity (Q(10)) for Re varied from 6.0 to 8.9 depending on vegetation zone. Q(10) decreased in the late growing season. Estimated NEP for the whole deep-water wetland over the growing season was 24 g C m(-2). Our results suggest that water depth is the major environmental control of seasonal variation in CO2 flux, whereas photosynthetic photon flux density (PPFD) controls diurnal dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the impact of livestock grazing on the emission of greenhouse gases from grazed wetlands, we examined biomass growth of plants, CO2 and CH4 fluxes under grazing and non-grazing conditions on the Qinghai-Tibetan Plateau wetland. After the grazing treatment for a period of about 3 months, net ecosystem CO2 uptake and aboveground biomass were significantly smaller, but ecosystem CH4 emissions were remarkably greater, under grazing conditions than under non-grazing conditions. Examination of the gas-transport system showed that the increased CH4 emissions resulted from mainly the increase of conductance in the gas-transport system of the grazed plants. The sum of global warming potential, which was estimated from the measured CO2 and CH4 fluxes, was 5.6- to 11.3-fold higher under grazing conditions than under non-grazing conditions. The results suggest that livestock grazing may increase the global warming potential of the alpine wetlands. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.