116 resultados para Via 3 Febbr. 1831
Resumo:
Uniform MF/YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) composite microspheres have been prepared via a simple and economical wet-chemical route at ambient pressure and low temperature. Monodisperse micrometer-sized melamine formaldehyde (MF) colloidal particles were first fabricated by a condensation process of melamine with formaldehyde. Subsequently, well-dispersed YVO4 nanoparticles were successfully grown onto the MF microspheres to form core-shell structured composite particles in aqueous Solution. The as-obtained composite microspheres with perfect spherical shape are uniform in size and distribution, and the thickness and roughness of the YVO4 shells on MF cores could be tuned by varying the reaction temperature. The MF/YVO4:Ln(3+) composite phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel displays.
Resumo:
Uniform Gd(OH)(3) nanotubes have been prepared via a simple wet-chemical route at ambient pressure and low temperature, without any catalysts, templates, or substrates, in which Gd(NO3)(3) was used as the gallium source and ammonia as the alkali. SEM and TEM images indicate that the as-obtained Gd(OH)3 entirely consists of uniform nanotubes in high yield with diameters of about 40 nm and lengths of 200-300 nm. The temperature-dependent morphological evolution and the formation mechanism of the Gd(OH)(3) nanotubes were investigated in detail. Furthermore, the Gd2O3 and Eu3+-doped Gd2O3 nanotubes, which inherit their parents' morphology, were obtained during a direct annealing process in air. The corresponding Gd2O3:Eu3+ nanotubes exhibit the strong red emission corresponding to the D-5(0)-F-7(2), transition of the Eu3+ ions under UV light or low-voltage electron beam excitation, which might find potential applications in the fields such as light-emitting phosphors, advanced flat panel displays, or biological labeling.
Resumo:
In this correspondence, we report on the first preparation of novel, robust Ru(bpy)(3)(2+)-containing supramolecular microstructures via a solution-based self-assembly strategy, carried out by directly mixing H2PtCl6 and Ru(bpy)(3)Cl-2 aqueous solutions at room temperature. It reveals that both the molar ratio and concentration of reactants have a heavy influence on the morphologies of such microstructures. The electrochemical behavior of the Ru(bpy)(3)(2+) components contained in the solid film of the microstructures formed on the electrode surface is also studied and found to exhibit a diffusion-controlled voltammetric feature. Most importantly, such microstructures exhibit excellent electrochemiluminescence (ECL) behaviors and therefore hold great promise as new luminescent materials for solid-state ECL detection in capillary electrophoresis (CE) or CE microchip.
Resumo:
Highly crystalline CaMoO4:Tb3+ phosphor layers were grown on monodisperse SiO2 particles through a simple sol-gel method, resulting in formation of core-shell structured SiO2@CaMoO4:Tb3+ submicrospheres. The resulting SiO2@CaMoO4: Tb3+ core-shell particles were fully characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and kinetic decays. The XRD results demonstrate that the CaMoO4:Tb3+ layers begin to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. SEM and TEM analysis indicates that the obtained submicrospheres have a uniform size distribution and obvious core-shell structure. SiO2@CaMoO4:Tb3+ submicrospheres show strong green emission under short ultraviolet (260 nm) and low-voltage electron beam (1-3 kV) excitation, and the emission spectra are dominated by a D-5(4) -F-7(5) transition of Tb3+(544 nm, green) from the CaMoO4:Tb3+ shells.
Resumo:
One-step synthesis of Ru (bpy)(3) Cl-2-immobilized (bpy = 2,2'-bipyridine) silica nanoparticles (Ru-silica nanoparticles) for use in electrogenerated-chemiluminescence (ECL) detection is reported. Ru-silica nanoparticles are prepared by using the Stober method. Compared with free Ru(bpy)(3)Cl-2, Ru-silica nanoparticles are seen to exhibit a red-shift of the UV-vis absorbance peak and a longer fluorescence lifetime, which are attributed to the electrostatic interaction of Ru(bpy)(3)(2+) and silica. Because silica nanoparticles are used as immobilization matrices, the surfaces of Ru-silica nanoparticles are easily modified or functionalized via the assembly of other nanoparticles, such as Au. For ECL detection, Au-colloid-modified Ru-silica nanoparticles are immobilized on a 3-mercaptopropyl-trimethoxysilane-modified indium tin oxide electrode surface by Au-S interaction; the surface concentration of electroactive Ru(bpy)(3)Cl-2 is obviously higher than that in silica films.
Resumo:
beta-NaYF4:Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu(3+) (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to D-5(0-3) -> F-7(J) (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively.
Resumo:
It was studied that the nanostructure formed on a gold surface via a simple oxidation-reduction cycles (ORC) in 0.1 M KCl containing Ru(bpy)(3)(2+) with different concentrations. Atomic force microscopy (AFM) and energy-dispersed spectroscopy (EDS) were used to characterize the nanostructure formed on the gold surface. Sweep-step voltammetry and corresponding electroluminescence (ECL) response, in situ electrochemical quartz crystal microbalance (EQCM) measurement were used to monitor the ORC. procedure. It was found that the surface structure became more uniform in the presence of Ru(bpy)(3)(2+), and the surface roughness was decreasing with the increasing of Ru(bpY)(3)(2+) concentration, suggesting a simple and effective method to control the formation of nanostructure on the gold surface.
Resumo:
Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+) -AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.
Resumo:
The structure, elastic, and electronic properties of OsN2 at various space groups: cubic Fm-3m, Pa-3, and orthorhombic Pnnm were studied by first-principles calculations based on density functional theory. Our calculation indicates that the structure in orthorhombic Pnnm phase is energetically more stable compared with cubic systems. It is metallic, mechanically stable and contains diatomic N-N units with the bond distance 1.418 A. These characters are consistent with experimental facts that OsN2 is orthorhombic and metallic. The calculated bulk modulus 394 GPa is also the highest among the considered space groups, slightly larger than previous value 358 GPa. The calculated elastic anisotropic factors and directional bulk modulus showed that OsN2 possess high elastic anisotropy.
Resumo:
The authors report enhanced poly(3-hexylthiophene) (P3HT):methanofullerene (PCBM) bulk-heterojunction photovoltaic cells via 1,2-dichlorobenzene (DCB) vapor treatment and thermal annealing. DCB vapor treatment can induce P3HT self-organizing into ordered structure leading to enhanced absorption and high hole mobility. Further annealing the device at a high temperature, PCBM molecules begin to diffuse into aggregates and together with the ordered P3HT phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Compared to the control device that is merely annealed, optical absorption, short-circuit current, and power conversion efficiency are increased for the DCB vapor-treated cell.
Resumo:
A novel triptycene-based dianhydride, 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride, was prepared from 4-nitro-N-methylphthalimide and potassium phenolate of 1,4-dihydroxytriptycene (1). The aromatic nucleophilic substitution reaction between 4-nitro-N-methylphthalimide and I afforded triptycene-based bis(N-methylphthalimide) (2), which hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). A series of new polyimides containing triptycene moieties were prepared from the dianhydride monomer (3) and various diamines in in-cresol via conventional one-step polycondensation method. Most of the resulting polyimides were soluble in common organic solvents, such as chloroform, THF, DMAc and DMSO. The polyimides exhibited excellent thermal and thermo-oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature ranging from 448 to 486 degrees C and 526 to 565 degrees C in nitrogen atmosphere, respectively. The glass transition temperatures of the polyimides were in the range of 221-296 degrees C. The polyimide films were found to be transparent, flexible, and tough. The films had tensile strengths, elongations at break, and tensile moduli in the ranges 95-118 MPa, 5.3-16.2%, and 1.03-1.38 GPa, respectively. Wide-angle X-ray diffraction measurements revealed that these polyimides were amorphous.
Resumo:
Surface-tethered oppositely charged weak polyelectrolyte block copolymer brushes composed of poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) were grown from the Si wafer by atom-transfer radical polymerization. The P2VP-b-PAA brushes were prepared through hydrolysis of the second PtBA block to the corresponding acrylic acid. The P2VP-b-PAA brushes with different PAA block length were obtained. The P2VP-b-PAA brushes revealed a unique reversible wetting behavior with pH. The difference between the solubility parameters for P2VP and PAA, the changes of surface chemical composition and surface roughness, and the reversible wetting behavior illustrated that the surface rearrangement occurred during treatment of the P2VP-b-PAA brushes by aqueous solution with different pH value. The reversible properties of the P2VP-b-PAA brushes can be used to regulate the adsorption of the sulfonated PS nanoparticles.
Resumo:
A reversibly tunable colloidal photonic crystal between two stop bands was realized by a liquid-solid phase transition of liquid infiltrated into the air voids of silica opals. The difference of the peak wavelengths of the two stop bands was dependent on the diameter of the silica opals and the difference of the refractive index of the filled solvent between the solid and liquid state. The reversibly tunable photonic crystals have good stability and reproducibility.
Resumo:
A facile and efficient one-pot synthesis of highly substituted pyridin-2(IH)-ones was developed via Vilsmeier-Haack reactions of readily available enaminones, 2-arylamino-3-acetyl-5,6-dihydro-4H-pyrans, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.
Resumo:
A series of cerium dioxide (CeO2,)/polyimide (PI) nanocomposites were successfully prepared from Ce(Phen)(3) and polyamic acid (PAA) via the solution direct-dispersing method, followed by a step thermal imidization process. TGA and XPS studies showed that the cerium complex decomposed to form CeO2, during the thermal imidization process at 300 degrees C. SEM observation showed that the formed CeO2, as nalloparticles was well dispersed in polyimide matrix with a size of about 50-100 nm for samples with different contents of CeO2. Thermal analysis indicated that the introduction of CeO2, decreased the thermal stability of nanocomposite films due to the decomposition of Ce(Phen)(3) in the imidization process, while the glass transition temperature (T-g) increased obviously. especially nanocomposite films with high loading of CeO2 exhibited a trend of disappearance off, DMTA and static tensile measurements showed that the storage modulus of nanocomposite films increased, while the elongation at break decreased with increasing CeO2 content.