102 resultados para Two-Phase Boundary Layer
Resumo:
The present paper investigates dispersed-phase flow structures of a dust cloud induced by a normal shock wave moving at a constant speed over a flat surface deposited with fine particles. In the shock-fitted coordinates, the general equations of dusty-gas
Resumo:
A blend of polyethersulfone (PES) and polycarbonate (PC) with a ratio of 40/60 was studied by scanning electron microscopy (SEM), dynamic mechanical analysis, and transmission electron microscopy (TEM). It was found that the PES-PC blend is a partially miscible, two-phase system, and an interfacial layer exists between the phases of PES and PC. Specific interaction resulting from the n-complex between PES and PC provides the driving force for formation of the interfacial layer. In addition, phase inversion behavior was also observed for the 40/60 composition.
Resumo:
A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization. The enthalpy method was applied to solve this two-phase axisymmetrical melting problem Computational results of temperature fields were obtained, which provide useful information to practical laser treatment processing. The validity of enthalpy method in solving such problems is presented.
Resumo:
Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier-Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
It is proved that the simplified Navier-Stokes (SNS) equations presented by Gao Zhi[1], Davis and Golowachof-Kuzbmin-Popof (GKP)[3] are respectively regular and singular near a separation point for a two-dimensional laminar flow over a flat plate. The order of the algebraic singularity of Davis and GKP equation[2,3] near the separation point is indicated. A comparison among the classical boundary layer (CBL) equations, Davis and GKP equations, Gao Zhi equations and the complete Navier-Stokes (NS) equations near the separation point is given.
Resumo:
The problem of thermophoretic deposition of small particles onto cold surfaces is studied in two-dimensional and axisymmetric flow fields. The particle concentration equation is solved numerically together with the momentum and energy equations in the laminar boundary layer with variable density effect included. It is shown explicitly to what extent the particle concentration and deposition rate at the wall are influenced by the density variation effect for external flow past bodies. The general numerical procedure is given for two-dimensional and axisymmetric cases and is illustrated with examples of thermophoretic deposition of particles in flows past a cold cylinder and a sphere.
Resumo:
We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix-free implicit cell-centered FV method. The pressure Poisson equation is solved by the node-based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered-mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix-free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid.
Resumo:
A novel Si-based metal-oxide-semiconductor (MOS) electrooptic phase modulator including two shunt oxide layer capacitors integrated on a silicon-on-insulator (SOI) waveguide is simulated and analyzed. The refractive index near the two gate oxide layers is modified by the free carrier dispersion effect induced by applying a positive bias on the electrodes. The theoretical calculation of free carrier distribution coupled with optical guided mode propagation characteristics has been carried out. The influence of the structure parameters such as the width and the doping level of the active region are analyzed. A half-wave voltage V-pi = 4 V is demonstrated with an 8-mm active region length and a 4-mu m width of an inner rib under an accumulation mode. When decreasing the inner rib width to 1 mu m, the phase modulation efficiency is even higher, and the rise and fall times reach 50 and 40 ps, respectively, with a 1.0 x 10(17) cm(-3) doping level in the active region.
Resumo:
The lateral epitaxial overgrowth of GaN was carried out by low-pressure metalorganic chemical vapor deposition, and the cross section shape of the stripes was characterized by scanning electron microscopy. Inclined {11-2n} facets (n approximate to 1-2.5) were observed in the initial growth, and they changed gradually into the vertical {11-20} sidewalls in accordance with the process of the lateral overgrowth. A model was proposed utilizing diffusion equations and boundary conditions to simulate the concentration of the Ga species constituent throughout the concentration boundary layer. Solutions to these equations are found using the two-dimensional, finite element method. We suggest that the observed evolution of sidewall facets results from the variation of the local V/III ratio during the process of lateral overgrowth induced by the lateral supply of the Ga species from the SiNx mask regions to the growing GaN regions.
Resumo:
The steady two-dimensional Navier-Stokes equations with the slip wall boundary conditions were used to simulate the supersonic flow in micro convergent-divergent nozzles. It is observed that shock waves can take place inside or outside of the micronozzles under the earth environment. For the over-expanded flows, there is a boundary layer separation point, downstream of which a wave interface separates the viscous boundary layer with back air flow and the inviscid core flow. The oblique shock wave is followed by the bow shock and shock diamond. The viscous boundary layer thickness relative to the whole nozzle width on the exit plane is increased but attains the maximum value around of 0.5 and oscillates against this value with the continuous increasing of the nozzle upstream pressures. The viscous effect either changes the normal shock waves outside of the nozzle for the inviscid flow to the oblique shock waves inside the nozzle, or transfers the expansion jet flow without shock waves for the inviscid flow to the oblique shock waves outside of the nozzle.
Resumo:
In this paper, we propose a new numerical modeling method – Convolutional Forsyte Polynomial Differentiator (CFPD), aimed at simulating seismic wave propagation in complex media with high efficiency and accuracy individually owned by short-scheme finite differentiator and general convolutional polynomial method. By adjusting the operator length and optimizing the operator coefficient, both global and local informations can be easily incorporated into the wavefield which is important to invert the undersurface geological structure. The key issue in this paper is to introduce the convolutional differentiator based on Forsyte generalized orthogonal polynomial in mathematics into the spatial differentiation of the first velocity-stress equation. To match the high accuracy of the spatial differentiator, this method in the time coordinate adopts staggered grid finite difference instead of conventional finite difference to model seismic wave propagation in heterogeneous media. To attenuate the reflection artifacts caused by artificial boundary, Perfectly Matched Layer (PML) absorbing boundary is also being considered in the method to deal with boundary problem due to its advantage of automatically handling large-angle emission. The PML formula for acoustic equation and first-order velocity-stress equation are also derived in this paper. There is little difference to implement the PML boundary condition in all kind of wave equations, but in Biot media, special attenuation factors should be taken. Numerical results demonstrate that the PML boundary condition is better than Cerjan absorbing boundary condition which makes it more suitable to hand the artificial boundary reflection. Based on the theories of anisotropy, Biot two-phase media and viscous-elasticity, this paper constructs the constitutive relationship for viscous-elastic and two-phase media, and further derives the first-order velocity-stress equation for 3D viscous-elastic and two-phase media. Numerical modeling using CFPD method is carried out in the above-mentioned media. The results modeled in the viscous-elastic media and the anisotropic pore elastic media can better explain wave phenomena of the true earth media, and can also prove that CFPD is a useful numerical tool to study the wave propagation in complex media.
Resumo:
A theoretical expression for vertical profile-of horizontal velocity in terms of its depth-average is derived based on oscillatory boundary layer theory and estuarine flow characteristics. The derived theoretical profile is then incorporated into a vertical quasi-two-dimensional model, which is proved advantageous in more physical implications and less CPU time demand. To validate the proposed model, the calculated results are compared to the field data in the Yangtze River Estuary, exhibiting good agreement with observations. The proposed quasi-two-dimensional vertical model is used to study mixing process, especially dependence of salinity distribution and salt front strength on runoff and tides in estuaries.
Resumo:
Both a real time optical interferometric experiment and a numerical simulation of two-dimension non-steady state model were employed to study the growth process of aqueous sodium chlorate crystals. The parameters such as solution concentration distribution, crystal dimensions, growth rate and velocity field were obtained by both experiment and numerical simulation. The influence of earth gravity during crystal growth process was analyzed. A reasonable theory model corresponding to the present experiment is advanced. The thickness of concentration boundary layer was investigated especially. The results from the experiment and numerical simulation match well.