102 resultados para Transition Waves
Resumo:
Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that motions (translations and rotations) are small magnitude. However, when TLP works in severe adverse conditions, the a priori assumption on small displacements may be inadequate. In such situation, the motions should be regarded as finite magnitude. This paper will study stochastic nonlinear dynamic responses of TLP with finite displacements in random waves. The nonlinearities considered are: large amplitude motions, coupling the six degrees-of-freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. The nonlinear dynamic responses are calculated by using numerical integration procedure in the time domain. After the time histories of the dynamic responses are obtained, we carry out cycle counting of the stress histories of the tethers with rain-flow counting method to get the stress range distribution.
Resumo:
This paper investiges the effect of pipe diameter on flow pattern transition boundary in oil water vertical flows, and proposes a model to determine the maximum inner diameter (D_{infty s}) of a pipe in which the slug flow would not occur When pipe inner diameter D>D_{infty s}, only bubble flow exists, while D
Resumo:
In the present paper the measured values of vibrational temperature behind strong shock waves are compared with theoretical ones. The histories of vibrational temperature behind strong shock waves in a shock tube were measured using two monochromators. The test gas was pure nitrogen at 100-300Pa, and the speeds of shock waves were 5.0-6.0km/s. The electronic temperature of N-2(+) was also approximately determined from experiment and compared with the experimental vibrational temperature. The results show that the presented calculational method is effective, and the electronic energy of N2+ is excited much faster than its vibrational energy. One Langmuir probe was used to determine the effective time of region 2. The influence of viscosity in the shock tube is also analyzed.
Resumo:
In this paper, the transition of a detonation from deflagration was investigated numerically while a detonation wave propagates in a tube with a sudden change in cross section, referred to as the expansion cavity. The dispersion-controlled scheme was adopted to solve Euler equations of axis-symmetric flows implemented with detailed chemical reaction kinetics of hydrogen-oxygen (or hydrogen-air) mixture. The fractional step method was applied to treat the stiff problems of chemical reaction flow. It is observed that phenomena of detonation quenching and reigniting appear when the planar detonation front diffracts at the vertex of the expansion cavity entrance. Numerical results show that detonation front in mixture of higher sensitivity keeps its substantial coupled structure when it propagates into the expansion cavity. However, the leading shock wave decouples with the combustion zone if mixture of lower sensitivity was set as the initial gas.
Resumo:
In the current paper an analytical solution for diffusive wave equation with the concentrate-distributed lateral inflow is yielded. Finite-difference numerical method is also employed to validate this model. The backwater effects drawn from lateral inflow on the mainstream are examined finally.
Resumo:
Onset and evolution of the Rayleigh-Benard (R-B) convection are investigated using the Information Preservation (IP) method. The information velocity and temperature are updated using the Octant Flux Splitting (OFS) model developed by Masters & Ye based on the Maxwell transport equation suggested by Sun & Boyd. Statistical noise inherent in particle approaches such as the direct simulation Monte Carlo (DSMC) method is effectively reduced by the IP method, and therefore the evolutions from an initial quiescent fluid to a final steady state are shown clearly. An interesting phenomenon is observed: when the Rayleigh number (Ra) exceeds its critical value, there exists an obvious incubation stage. During the incubation stage, the vortex structure clearly appears and evolves, whereas the Nusselt number (Nu) of the lower plate is close to unity. After the incubation stage, the vortex velocity and Nu rapidly increase, and the flow field quickly reaches a steady, convective state. A relation of Nu to Ra given by IP agrees with those given by DSMC, the classical theory and experimental data.
Receptivity to free-stream disturbance waves for blunt cone axial symmetry hypersonic boundary layer
Resumo:
Based on high-order compact upwind scheme, a high-order shock-fitting finite difference scheme is studied to simulate the generation of boundary layer disturbance waves due to free-stream waves. Both steady and unsteady flow solutions of the receptivity problem are obtained by resolving the full Navier-Stokes equations. The interactions of bow-shock and free-stream disturbance are researched. Direct numerical simulation (DNS) of receptivity to free-stream disturbances for blunt cone hypersonic boundary layers is performed.
Resumo:
Morison's equation is used for estimating internal solitary wave-induced forces exerted on SPAR and semi-submersible platforms. And the results we got have also been compared to ocean surface wave loading. It is shown that Morison's equation is an appropriate approach to estimate internal wave loading even for SPAR and semi-submersible platforms, and the internal solitary wave load on floating platforms is comparable to surface wave counterpart. Moreover, the effects of the layers with different thickness on internal solitary wave force are investigated.
Resumo:
When designing deep ocean structures, it is necessary to estimate the effects of internal waves on the platform and auxiliary parts such as tension leg, riser and mooring lines. Up to now, only a few studies are concerned with the internal wave velocity fields. By using the most representative two-layer model, we have analyzed the behavior of velocity field induced by interfacial wave in the present paper. We find that there may exist velocity shear of fluid particles in the upper and lower layers so that any structures in the ocean are subjected to shear force nearby the interface. In the meantime, the magnitude of velocity for long internal wave appears spatially uniform in the respective layer although they still decay exponentially. Finally, the temporal variation for Stokes and solitary waves are shown to be of periodical and pulse type.
Resumo:
Mechanical spectroscopy measurement is performed to study the internal friction of nanocrystalline ( NC) nickel with an average grain size of 23 nm from room temperature to 610 K. An internal friction peak is observed at about 550 K, which corresponds to the Curie transition process of the NC nickel according to the result of magnetization test. Moreover, the fact that the Curie temperature of NC nickel is lower than that of coarse-grained nickel is explained by an analytical model based on the weakening of cohesive energy.
Resumo:
The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
Resumo:
We report an intriguing observation that the interaction of brittle nanoscale periodic corrugations (NPCs) can lead to the formation of ductile dimples on the dynamic fracture surface of a tough Vit 1 bulk metallic glass (BMG) under high-velocity plate impact. A “beat” phenomenon due to superposition of simple harmonic vibrations, approximately characterizing NPCs, is proposed to explain this unusual brittle-to-ductile transition. The present results agree well with our previously revealed energy dissipation mechanism in the fracture of BMGs.
Resumo:
Strong mechanical forces can, obviously, disrupt cell-cell and cell-matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin-integrin interaction and integrin-ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin-ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin-ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force. PMID: 20542514
Resumo:
Self-organized generation of transverse waves associated with the transverse wave instabilities at a diverging cylindrical detonation front was numerically studied by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. After solution validation, four mechanisms of the transverse wave generation were identified from numerical simulations, and referred to as the concave front focusing, the kinked front evolution, the wrinkled front evolution and the transverse wave merging, respectively. The propagation of the cylindrical detonation is maintained by the growth of the transverse waves that match the rate of increase in surface area of the detonation front to asymptotically approach a constant average number of transverse waves per unit length along the circumference of the detonation front. This cell bifurcation phenomenon of cellular detonations is discussed in detail to gain better understanding on detonation physics.