205 resultados para TSUNAMI GENERATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a method to generate an ultra-slow atomic beam by velocity selective resonance (VSR). A VSR experiment on a metastable helium beam in a magnetic field is presented and the results show that the transverse velocity of the defected beam can be cooled and precisely controlled to less than the recoil velocity, depending on the magnitude of the magnetic field. We extend this idea to a cold atomic cloud to produce an ultra-slow Rb-87 beam that can be used as a source of an atomic fountain clock or a space clock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafast temporal pattern generation and recognition with femtosecond laser technology is presented, analyzed, and experimentally implemented. Ultrafast temporal pattern generation and recognition are realized by taking advantage of two well-known techniques: the space-time conversion technique and the ultrafast pulse measurement technique. Here the temporal pattern for the designed multiple pulses, optimized with a preassumed Gaussian spectral distribution of an ultrashort pulse, is described. With the simulation of a Gaussian spectral distribution, we realize that the uniformity of the generated multiple ultrafast temporal pulses is relevant to the repeated number of modulation periods in the mask in the spectral plane. Moreover, the change of Gaussian spectral phases with the wavelengths in the modulated phase plate is considered. Experiments of ultrafast temporal pattern recognition by the frequency-resolved optical gating (FROG) characterization technique are also given. (C) 2004 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hexagonal array not only is a nature-preferred pattern but also is widely used in optoelectronical materials and devices. We report a simple method of hexagonal array illumination based on the Talbot effect that has a theoretical efficiency of 100%. An experimental efficiency of 90.6% with a binary phase (0, pi) hexagonal grating is given. This method should be highly interesting for applications of hexagonal array illumination in optical devices as well as in other hexagonal cells. (C) 2002 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel scheme is proposed to transform a Gaussian pulse to a millimeter-wave frequency modulation pulse by using an apodized Moire fiber Bragg grating in radio-over-fiber system. The relation between the input and output pulses is analyzed theoretically by Fourier transformation method and the requirements for the proposed fiber grating are presented. An apodized Moire fiber Bragg grating is designed and its characteristics are studied. It is shown that the proposed device is feasible, and the new scheme is believed to be an effective solution for the generation of millimeter-wave sub-carrier in future radio-over-fiber systems. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper is described a novel technique for producing an electro-optical intensity synthesizer which can generate different periodic time domain waveforms through only sine or cosine wave applied-voltages. The synthesizer presented here consists of a series of stages between two polarizers, with each stage consisting of an electro-optic element and a compensator. Every electro-optical element has the same applied-voltage function but different azimuth angles and ratios between the longitudinal and transverse lengths. The main principle is the synthesis of an electro-optic effect and a polarization interference effect in the time domain. This technique is based on an expanded Fourier positive-direction searching algorithm, which can not only simplify the calculation process but also produces many choices of structural parameters for different waveforms generation. A three-stage synthesis of an electro-optical birefringent system for continuous square waveform is undertaken to prove the principle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency resolved optical gating (FROG), is an effective technique for characterizing the ultrafast laser pulses. The multi-shot second harmonic generation (SHG) FROG is the most sensitive one in different FROGs. In this paper we use this technique to measure the femtosecond optical pulses generated by a conventional Ti:sapphire oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grating pairs are widely used for pulse compression and stretching. Normally, the two gratings are identical. We propose a very simple structure with double-line-density reflective gratings for pulse compression and generation of double pulses, which has the advantages of no material dispersion, compact in volume, simple in structure, etc. The use of reflective Dammann gratings fully demonstrated the principle of this structure. The output pulses are well verified by a standard frequency-resolved optical gating apparatus. This structure will be highly interesting in ultrashort pulse compression and other more practical applications of femtosecond laser pulses. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doubled femtosecond laser pulses in-line are needed in the collinear pump-probe technique, collinear second harmonic generation frequency-resolved optical gating (SHG FROG) and the spectral phase interferometry for direct electric-field reconstruction (SPIDER), etc. Normally, it is generated by using a Michelson's structure. In this paper, we proposed a novel structure with two-layered reflective Dammann gratings and the reflective mirrors to generate doubled femtosecond laser pulses in line without transmission optical elements. Angular dispersion and spectral spatial walk-off are both compensated. In addition, this structure can also compress the positive chirped pulse, which cannot be realized with a Michelson's structure. By adopting triangular grating and blazed gratings, the efficiency of the system would in principle be increased as the Michelson's scheme. Experiments demonstrated that this method should be an alternative approach for generation of the double compressed pulses of femtosecond laser for practical applications. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The next generation digital versatile disk (DVD) using blue lasers will have a capacity of 13 to 15 Gbytes. Compared with current DVD, the wavelength will be shorter and the numerical aperture (NA) will be higher. But with the increase of NA and decrease of wave length, the depth of focus (DOF) decrease rapidly, which makes it hard for the servo-system to track. We propose an optimized three-portion phase-shifting apodizer to increase the depth of focus and at the same time minimize the spot size, which makes the DOF of next generation DVD comparable to current DVD. The simulation result shows that an optical system with this apodizer also has a good defocus characteristic. (C) 2001 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Second-harmonic generation was observed in Ge(20)AS(25)S(55) chalcogenide glass irradiated by an electron beam. The second-harmonic intensity increased with increasing electron-beam current and accelerating voltage. The second-harmonic generation in Ge20As25S55 glass was caused by the space-charge electrostatic field that was generated by irradiation of an electron beam. Second-order nonlinearity chi ((2)) as great as 0.8 pm/V was obtained. The results of measurements of thermally stimulated depolarization current indicated that the glass was poled in the thin layers of its surface (several micrometers) and that the nonlinearity was stable. (C) 2001 Optical Society of America.