109 resultados para Symmetric functions
Resumo:
The light-front quark model has been applied to calculate the transition matrix elements of heavy hadron decays. However, it is noted that using the traditional wave functions of the light-front quark model given in the literature, the theoretically determined decay constants of the Gamma(nS) obviously contradict the data. This implies that the wave functions must be modified. Keeping the orthogonality among the nS states and fitting their decay constants, we obtain a series of the wave functions for Gamma(nS). Based on these wave functions and by analogy with the hydrogen atom, we suggest a modified analytical form for the Gamma(nS) wave functions. Using the modified wave functions, the obtained decay constants are close to the experimental data. Then we calculate the rates of radiative decays of Gamma(nS) -> eta(b) + gamma. Our predictions are consistent with the experimental data on decays Gamma(3S) -> eta(b) + gamma within the theoretical and experimental errors.
Resumo:
Balance functions have been measured for charged-particle pairs, identified charged-pion pairs, and identified charged-kaon pairs in Au + Au, d + Au, and p + p collisions at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These balance functions are presented in terms of relative pseudorapidity, Delta eta, relative rapidity, Delta y, relative azimuthal angle, Delta phi, and invariant relative momentum, q(inv). For charged-particle pairs, the width of the balance function in terms of Delta eta scales smoothly with the number of participating nucleons, while HIJING and UrQMD model calculations show no dependence on centrality or system size. For charged-particle and charged-pion pairs, the balance functions widths in terms of Delta eta and Delta y are narrower in central Au + Au collisions than in peripheral collisions. The width for central collisions is consistent with thermal blast-wave models where the balancing charges are highly correlated in coordinate space at breakup. This strong correlation might be explained by either delayed hadronization or limited diffusion during the reaction. Furthermore, the narrowing trend is consistent with the lower kinetic temperatures inherent to more central collisions. In contrast, the width of the balance function for charged-kaon pairs in terms of Delta y shows little centrality dependence, which may signal a different production mechanism for kaons. The widths of the balance functions for charged pions and kaons in terms of q(inv) narrow in central collisions compared to peripheral collisions, which may be driven by the change in the kinetic temperature.
Resumo:
The low-temperature heat capacities of cyclohexane were measured in the temperature range from 78 to 350 K by means of an automatic adiabatic calorimeter equipped with a new sample container adapted to measure heat capacities of liquids. The sample container was described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on water. The deviations of experimental heat capacities from the corresponding smoothed values lie within +/-0.3%, while the inaccuracy is within +/-0.4%, compared with the reference data in the whole experimental temperature range. Two kinds of phase transitions were found at 186.065 and 279.684 K corresponding solid-solid and solid-liquid phase transitions, respectively. The entropy and enthalpy of the phase transition, as well as the thermodynamic functions {H-(T)- H-298.15 K} and {S-(T)-S-298.15 K}, were derived from the heat capacity data. The mass fraction purity of cyclohexane sample used in the present calorimetric study was determined to be 99.9965% by fraction melting approach.
Resumo:
The heat capacities of p-chlorobenzoic acid were measured in the temperature range from 80 to 580 K by means of an automatic adiabatic calorimeter equipped with a small sample cell of internal volume of 7.4cm(3). The construction and procedures of the calorimetric system were described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on alpha-Al2O3. The deviations of experimental heat capacities from the corresponding smoothed values lie within +/-0.28 per cent, while the inaccuracy is within +/-0.40 per cent, compared with the recommended reference data in the whole experimental temperature range. A fusion transition at T = 512.280 K was found from the C-p-T curve of p-chlorobenzoic acid. The enthalpy and entropy of the phase transition, as well as the thermodynamic functions {G((T)) - G((298.15))}, {H-(T) - H-(298.15)} and {S-(T) - S-298.15}, were derived from the heat capacity data. The mass fraction purity of p-chlorobenzoic acid sample used in the present calorimetric study was determined to be 0.99935 by fraction melting approach. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Schiff base compounds refer to the branch of supra-molecules and can be used as sensing material in the construction of potentiometric ion selective electrodes (ISEs). This relatively modern field has been subject to extensive research in the period of 1999-2007 when more than 100 ISEs employing Schiff bases were constructed. The quantitative high-throughput detection of 29 cations and 7 anions has been demonstrated in various scientific branches, such as biomedicine, pharmacy, biochemistry, pharmacology, environmental chemistry, food technology, and agriculture. This review discusses Schiff base compounds and their applications in the design and development of ion selective sensors and microsensors.
Resumo:
The phase behavior of symmetric ABA triblock copolymers containing a semiflexible midblock is studied by lattice Monte Carlo simulation. As the midblock evolves from a fully flexible state to a semiflexible state in terms of increase in its persistence length, different phase behaviors are observed while cooling the system from an infinite high temperature to a temperature below T-ODT (order-disorder transition temperature). Within the midblock flexibility range we studied (l(p)/N-c <= 0.105), a lamellar structure is formed at equilibrium state as the situation for fully flexible chains. The fraction of bridge chain is evaluated for the lamellar structures. We find that the increase in midblock rigidity indeed results in the increase in bridge chain fraction within the range from 44.9% to 51.8%.
Resumo:
The efficient synthesis of (TMS)(2)-[7]helicene (rac-3) and double helicene, a D-2-symmetric dimer of 3,3'-bis(dithieno-[2,3-b:3',2'-d]thiophene) (rac-4) was developed. The crystal structures of 3 and 4 show both strong intermolecular pi-pi interactions and S center dot center dot center dot S interactions. UV/vis spectra reveal that both 3 and 4 show significant pi-electron delocalization.
Resumo:
The thin films of a symmetric crystalline-coil diblock copolymer of poly(L-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (T-g(PLLA)), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (T-c), the glass transition temperature of PS (T-g(PS)), the peak melting point of PLLA crystals (T-m(PLLA)), and the end melting point of PLLA crystals (T-m,end(PLLA)). When annealed at (T-c =) 80 degrees C (T-c < T-g(PS) < T-ODT, order-disorder transition temperature), 123 degrees C (T-g(PS) < T-c < T-m(PLLA) < T-ODT). 165 degrees C (T-g(PS) < T-m(PLLA) < T-c < T-m,end(PLLA) < T-ODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced.
Resumo:
Some G-quadruplex DNA aptamers have been found to strongly bind hemin to form DNAzymes with peroxidase-like activity. To help determine the most suitable DNAzymes and to understand how they work, five previously reported G-quadruplex aptamers were compared for their binding affinity and then the potential catalytic mechanism of their corresponding hemin-G-quadruplex DNAzymes was explored. Among these aptamers, a G-quadruplex named AGRO100 was shown to possess the highest hemin-binding affinity and the best DNAzyme function. This means that AGRO100 is the most ideal candidate for DNAzyme-based analysis. Furthermore, we found the peroxidase-like activity of DNAzyme to be primarily dependent on the concentration of H2O2 and independent of that of the peroxidase substrate (that is, 2,2-azino-bis(3-ethytbenzothiazoline-6-sulfonic acid)diammonium salt). Accordingly, a reaction mechanism for DNAzyme-catalyzed peroxidation is proposed. This study provides new insights into the G-quadruplex-based DNAzymes and will help us to further extend their applications in the analytical field.
Resumo:
The effects of blend composition on morphology, order-disorder transition (ODT), and chain conformation of symmetric ABA/AB copolymer blends confined between two neutral hard walls have been investigated by lattice Monte Carlo simulation. Only lamellar structure is observed in all the simulation morphologies under thermodynamic equilibrium state, which is supported by theoretical prediction. When the composition of AB diblock copolymer (phi) increases, both lamellar spacing and the corresponding ODT temperature increase, which can be attributed to the variation of conformation distribution of the diblock and the triblock copolymer chains. In addition, both diblock and triblock copolymer, chains with bridge conformation extend dramatically in the direction parallel to the surface when the system is in ordered state. Finally, the copolymer chain conformation depends strongly on both the blend composition and the incompatibility parameter chi N.
Resumo:
The self-assembly of symmetric coil-rod-coil ABA-type triblock copolymer melts is studied by applying self-consistent field lattice techniques in a three-dimensional space. The self-assembled ordered structures differ significantly with the variation of the volume fraction of the rod component, which include lamellar, wave lamellar, gyroid, perforated lamellar, cylindrical, and spherical-like phases. To understand the physical essence of these phases and the regimes of occurrence, we construct the phase diagram, which matches qualitatively with the existing experimental results. Compared with the coil-rod AB diblock copolymer, our results revealed that the interfacial grafting density of the separating rod and coil segments shows important influence on the self-assembly behaviors of symmetric coil-rod-coil ABA triblock copolymer melts. We found that the order-disorder transition point changes from f(rod)=0.5 for AB diblock copolymers to f(rod)=0.6 for ABA triblock copolymers. Our results also show that the spherical-like and cylindrical phases occupy most of the region in the phase diagram, and the lamellar phase is found stable only at the high volume fraction of the rod.
Resumo:
A novel fluorescent dye labeled H-shaped block copolymer, (PMMA-Fluor-PS)(2)-PEO-(PS-Fluor-PMMA)(2), is synthesized by the combination of atom transfer radical polymerization (ATRP) and anionic polymerization (AP). To obtain the designated structure of the copolymer, a macroinitiator, 2,2-dichloro acetyl-PEO-2,2-dichloro acetyl (DCA-PEO-DCA), was prepared from DCAC and poly(ethylene oxide). The copolymer was characterized by H-1 NMR, GPC and fluorescence spectroscopy.
Resumo:
We have studied the lamellar orientation in thin films of a model diblock copolymer, symmetric poly(styrene)-b-poly(L-lactide) (PS-PLLA), in the melt state on supported silicon wafer surface. In this system, while the PLLA block prefers to wet the polymer/substrate interface, the polymer/air as well as polymer/polymer interface is neutral for both blocks due to the similar surface energies of PS and PLLA in melt state. Our results demonstrate that the interplay of the interfaces during phase separation results in a series of structures before approaching the equilibrium state. Lamellar orientation of thin films with different initial film thicknesses at different annealing stages has been investigated using atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It is found that in the early stage (annealing time t < 10 min), the polymer/substrate interface dominates the structure evolution, leading to a parallel lamellar structure with holes or islands formed depending on the initial film thickness. Later on, the neutral air interface becomes important and leads to a transition of lamellar orientation from parallel to perpendicular. It is interesting to see that for films with thickness h > 2L, where L is the bulk lamellar period, the lamellar orientation transition can occur independently in different parallel lamellar domains due to the neutrality of polymer/polymer interface.