133 resultados para Suspended sediment
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
Changes in statistics (mean, sorting, and skewness) describing grain-size distributions have long been used to speculate on the direction of sediment transport. We present a simple model whereby the distributions of sediment in transport are related to their source by a sediment transfer function which defines the relative probability that a grain within each particular class interval will be eroded and transported. A variety of empirically derived transfer functions exhibit negatively skewed distributions (on a phi scale). Thus, when a sediment is being eroded, the probability of any grain going into transport increases with diminishing grain size throughout more than half of its size range. This causes the sediment in transport to be finer and more negatively skewed than its source, whereas the remaining sediment (a lag) must become relatively coarser and more positively skewed. Flume experiments show that the distributions of transfer functions change from having a highly negative skewness to being nearly symmetrical (although still negatively skewed) as the energy of the transporting process increases. We call the two extremes low-energy and high-energy transfer functions , respectively. In an expanded sediment-transport model, successive deposits in the direction of transport are related by a combination of two transfer functions. If energy is decreasing and the transfer functions have low-energy distributions, successive deposits will become finer and more negatively skewed. If, however, energy is decreasing, but the initial transfer function has a high-energy distribution, successive deposits will become coarser and more positively skewed. The variance of the distributions of lags, sediment in transport, and successive deposits in the down-current direction must eventually decrease (i.e., the sediments will become better sorted). We demonstrate that it is possible for variance first to increase, but suggest that, in reality, an increasing variance in the direction of transport will seldom be observed, particularly when grain-size distributions are described in phi units. This model describing changes in sediment distributions was tested in a variety of environments where the transport direction was known. The results indicate that the model has real-world validity and can provide a method to predict the directions of sediment transport
Resumo:
We measured delta C-13 of CO2, CH4, and acetate-methyl in profundal sediment of eutrophic Lake Dagow by incubation experiments in the presence and absence of methanogenic inhibitors chloroform, bromoethane sulfonate (BES), and methyl fluoride, which have different specificities. Methyl fluoride predominantly inhibits acetoclastic methanogenesis and affects hydrogenotrophic methanogenesis relatively little. Optimization of methyl fluoride concentrations resulted in complete inhibition of acetoclastic methanogenesis. Methane was then exclusively produced by hydrogenotrophic methanogenesis and thus allowed determination of the fractionation factors specific for this methanogenic pathway. Acetate, which was then no longer consumed, accumulated and allowed determination of the isotopic signatures of the fermentatively produced acetate. BES and chloroform also inhibited CH4 production and resulted in accumulation of acetate. The fractionation factor for hydrogenotrophic methanogenesis exhibited variability, e. g., it changed with sediment depth. The delta C-13 of the methyl group of the accumulated acetate was similar to the delta C-13 of sedimentary organic carbon, while that of the carboxyl group was by about 12 parts per thousand higher. However, the delta C-13 of the acetate was by about 5 parts per thousand lower in samples with uninhibited compared with inhibited acetoclastic methanogenesis, indicating unusual isotopic fractionation. The isotope data were used for calculation of the relative contribution of hydrogenotrophic vs. acetoclastic methanogenesis to total CH4 production. Contribution of hydrogenotrophic methanogenesis increased with sediment depth from about 35% to 60%, indicating that organic matter was only partially oxidized in deeper sediment layers.
Resumo:
Labyrinthulomycetes (Labyrinthulea) are ubiquitous marine osmoheterotrophic protists that appear to be important in decomposition of both allochthonous and autochthonous organic matter. We used a cultivation-independent method based on the labyrinthulomycete-specific primer LABY-Y to PCR amplify, clone, and sequence 68 nearly full-length 18S rDNA amplicons from 4 sediment and 3 seawater samples collected in estuarine habitats around Long Island, New York, USA. Phylogenetic analyses revealed that all 68 amplicons belonged to the Labyrinthulea. Only 15 of the 68 amplicons belonged to the thraustochytrid phylogenetic group (Thraustochytriidae). None of these 15 were similar to cultivated strains, and 11 formed a novel group. The remaining 53 amplicons belonged either to the labyrinthulid phylogenetic group (Labyrinthulidae) or to other families of Labyrinthulea. that have not yet been described. Of these amplicons, 37 were closely related to previously cultivated Aplanochytrium spp. and Oblongichytrium spp. Members of these 2 genera were also cultivated from 1 of the sediment samples. The 16 other amplicons were not closely related to cultivated strains, and 15 belonged to 5 groups of apparently novel labyrinthulomycetes. Most of the novel groups of amplicons also contained environmental sequences from surveys of protist diversity using universal 18S rDNA primers. Because the primer LABY-Y is biased against several groups of labyrinthulomycetes, particularly among the thraustochytrids, these results may underestimate the undiscovered diversity of labyrinthulomycetes.
Resumo:
Lake of the Woods (LOW) is an international waterbody spanning the Canadian provinces of Ontario and Manitoba, and the U.S. state of Minnesota. In recent years, there has been a perception that water quality has deteriorated in northern regions of the lake, with all increase in the frequency and intensity of toxin-producing cyanobacterial blooms. However, given the lack of long-term data these trends are difficult to verify. As a first step, we examine spatial and seasonal patterns in water quality in this highly complex lake on the Canadian Shield. Further, we examine surface sediment diatom assemblages across multiple sites to determine if they track within-take differences in environmental conditions. Our results show that there are significant spatial patterns in water quality in LOW. Principal Component Analysis divides the lake into three geographic zones based primarily on algal nutrients (i.e., total phosphorus, TP), with the highest concentrations at sites proximal to Rainy River. This variation is closely tracked by sedimentary diatom assemblages, with [TP] explaining 43% of the variation in diatom assemblages across sites. The close correlation between water quality and the surface sediment diatom record indicate that paleoecological models could be used to provide data on the relative importance of natural and anthropogenic sources of nutrients to the lake.
Resumo:
National Natural Science Foundation of China [U0633002, 30670385]