85 resultados para Superconducting materials
Resumo:
We compare the effectiveness of six exchange/correlation functional combinations (Becke/Lee, Yang and Parr; Becke-3/Lee, Yang and Parr; Becke/Perdew-Wang 91; Becke-3/Perdew-Wang 91; Becke/Perdew 86; Becke-3/Perdew 86) for computing C-N, O-O and N-NO2 dissociation energies and dipole moments of five compounds. The studied compounds are hexabydro-1,3,5-trinitro-1,3,5-triazine (RDX), dimethylnitramine, cyanogen, nitromethane and ozone. The Becke-3/Perdew 86 in conjunction with 6-31G
Resumo:
The doped Eu3+ ions can be partly reduced to Eu2+ in a series of MO-B2O3: Eu (M=Ba, Sr, Ca) glasses synthesized in air atmosphere, but not in the 12CaO-7Al(2)O(3): Eu glass. The different redox-behavior of Eu ions in these two glass systems is attributed to the different host optical basicity. It is found that a lower valence state of Eu2+ is more favorable in acidic glasses, which have lower optical basicities. A notion of the critical value of optical basicity is introduced empirically, which can be used as a guide for the selection of glass composition suitable to incorporate Eu2+ for luminescence. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Blue, green and red emissions through frequency upconversion and energy transfer processes in Tm3+/Er3+/Yb3+-codoped oxyhalide tellurite glass under 980 nm excitation are investigated. The intense blue (476 nm), green (530 and 545 nm) and red (656 nm) emissions are simultaneously observed at room temperature. The blue (476 nm) emission was originated from the (1)G(4)->H-3(6) transition of Tm3+. The green (530 and 545 nm), and red (656 nm) upconversion luminescences were identified from the H-2(11/2)->I-4(15/2), S-4(3/2)->I-4(15/2), and F-4(9/2)->I-4(15/2) transitions of Er3+, respectively. The energy transfer processes and possible upconversion mechanisms are evaluated. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
New broadband near infrared luminescence covering the whole work windows (1260-1625 nm) of the current wavelength division multiplexing (WDM) system was found from bismuth-activated M2O-Al2O3-SiO2 (M = Li, Na) and Li2O-Ta2O5-SiO2 glasses at room temperature in the case of 808 nm-laser excitation. But the near infrared luminescence mechanism of the bismuth-activated glasses is not well understood up to now. The figure-of-merits of bandwidth and gain of the glasses are better than those of Er3+-doped silicate glasses and Ti3+ doped sapphire, implying they are the promising gain-medium candidates for the broadband amplifiers and the widely tunable laser sources. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Periodic nanostructures along the polarization direction of light are observed inside silica glasses and tellurium dioxide single crystal after irradiation by a focused single femtosecond laser beam. Backscattering electron images of the irradiated spot inside silica glass reveal a periodic structure of stripe-like regions of similar to 20 nm width with a low oxygen concentration. In the case of the tellurium dioxide single crystal, secondary electron images within the focal spot show the formation of a periodic structure of voids with 30 nm width. Oxygen defects in a silica glass and voids in a tellurium dioxide single crystal are aligned perpendicular to the laser polarization direction. These are the smallest nanostructures below the diffraction limit of light, which are formed inside transparent materials. The phenomenon is interpreted in terms of interference between the incident light field and the electric field of electron plasma wave generated in the bulk of material.
Resumo:
Femtosecond pulsed lasers have been widely used for materials microprocessing. Due to their ultrashort pulse width and ultrahigh light intensity, the process is generally characterized by the nonthermal diffusion process. We observed various induced microstructures such as refractive-index-changed structures, color center defects, microvoids and microcracks in transparent materials (e.g., glasses after the femtosecond laser irradiation), and discussed the possible applications of the microstructures in the fabrication of various micro optical devices [e.g., optical waveguides, microgratings, microlenses, fiber attenuators, and three-dimensional (3D) optical memory]. In this paper, we review our recent research developments on single femtosecond-laser-induced nanostructures. We introduce the space-selective valence state manipulation of active ions, precipitation and control of metal nanoparticles and light polarization-dependent permanent nanostructures, and discuss the mechanisms and possible applications of the observed phenomena.