119 resultados para Strain rate effect


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evolution of localized damage zone is a key to catastrophic rupture in heterogeneous materials. In the present article, the evolutions of strain fields of rock specimens are investigated experimentally. The observed evolution of fluctuations and autocorrelations of strain fields under uniaxial compression demonstrates that the localization of deformation always appears ahead of catastrophic rupture. In particular, the localization evolves pronouncedly with increasing deformation in the rock experiments. By means of the definition of the zone with high strain rate and likely damage localization, it is found that the size of the localized zone decreases from the sample size at peak load to an eventual value. Actually, the deformation field beyond peak load is bound to suffer bifurcation, namely an elastic unloading part and a continuing but localized damage part will co-exist in series in a specimen. To describe this continuous bifurcation and localization process observed in experiments, a model on continuum mechanics is developed. The model can explain why the decreasing width of localized zone can lead stable deformation to unstable, but it still has not provided the complete equations governing the evolution of the localized zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work, nanocrystalline Ni (nc-Ni) with a broad grain size distribution (BGSD) of 5-120 nm and an average grain size of 27.2 nm was prepared. The BGSD nc-Ni sample shows a similar strength and good ductility in comparison with electrodeposited nc-Ni with a narrow grain size distribution. The intracrystalline dislocation network was observed in the post-deformed microstructure confirming the conventional intracrystalline dislocation sliding mechanism in BGSD nc-Ni. The uniaxial tensile loading-unloading-loading deformation shows BGSD nc-Ni has the capability to store dislocations in the grain interior, which is very limited compared with that of coarse grained metals. For BGSD nc-Ni, the strain rate sensitivity of flow stress m enhances with decreasing strain rate. At the strain rate of 5 x 10(-6) s(-1), m was estimated to be 0.055. At the corresponding strain rate, the enhanced ductility along with the decreased strength was achievable, indicating activation of other deformation mechanisms, e. g. grain boundary sliding or diffusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic planar compressive experiments on a typical tough Zr-BMG (Bulk Metallic Glass) were carried out under impact velocity of 500-600 m/sec and strain rate of 10(6)/s. The fracture surface of samples exhibits different fracture patterns at different parts of the sample. At a corner close to the front loading boundary, fracture patterns from the free edge toward the centre changed from equiaxial veins in microscale to periodic corrugations in nanoscale; in the middle of the sample, the fracture surface contains glazed zones laid out orderly along the same boundary. FEM simulation was performed to investigate the stress distributions in the impacted sample under a short duration impact loading. It has revealed that the fracture patterns changing from the free edge toward the centre were resulted from the fracture modes' changing from the tensile dominant fracture to the shear dominant fracture. Whereas at the middle part of the sample, fracture initiated from several parallel shear bands propagating close to the same boundary is due to a large strain or much higher shear stress in this area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

perimentally at evaluated pressures and under normal- and micro-gravity conditions utilizing the 3.5 s drop tower of the National Microgravity Laboratory of China. The results showed that under micro-gravity conditions the natural convection is minimized and the flames become more planar and symmetric compared to normal gravity. In both normal- and micro-gravity experiments and for a given strain rate and fuel concentration, the flame luminosity was found to enhance as the pressure increases. On the other hand, at a given pressure, the flame luminosity was determined to weaken as the strain rate decreases. At a given strain rate, the fuel concentration at extinction was found to vary non-monotonically with pressure, namely it first increases and subsequently decreases with pressure. The limit fuel concentration peaks around 3 and 4 atm under normal- and micro-gravity, respectively. The extinction limits measured at micro-gravity were in good agreement with predictions obtained through detailed numerical simulations but they are notably lower compared to the data obtained under normal gravity. The simulations confirmed the non-monotonic variation of flammability limits with pressure, in agreement with previous studies. Sensitivity analysis showed that for pressures between one and 5 atm, the near-limit flame response is dominated by the competition between the main branching, H + O2 ? OH + O, and the pressure sensitive termination, H+O2+M? HO2 + M, reaction. However, for pressures greater than 5 atm it was determined that the HO2 kinetics result in further chain branching in a way that is analogous to the third explosion limit of H2/O2 mixtures. 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three series of tensile tests with constant cross-head speeds (ranging from 5 to 200 mm/min), tensile relaxation tests (at strains from 0.03 to 0.09) and tensile creep tests (at stresses from 2.0 to 6.0 MPa) are performed on low-density polyethylene at room temperature. Constitutive equations are derived for the time-dependent response of semicrystalline polymers at isothermal deformation with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical cross-links and lamellar blocks). The network is thought of as an ensemble of meso-regions linked with each other. The viscoelastic behavior of a polymer is modelled as thermally-induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects mutual displacement of meso-domains driven by macro-strains. Stress-strain relations for uniaxial deformation are developed by using the laws of thermodynamics. The governing equations involve five material constants that are found by fitting the observations. Fair agreement is demonstrated between the experimental data and the results of numerical simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The brittle-ductile transition (BDT) of particle toughened polymers was extensively studied in terms of morphology, strain rate, and temperature. The calculation results showed that both the critical interparticle distance (IDc) and the brittle-ductile transition temperature (T-BD) of polymers were a function of strain rate. The IDc reduced nonlinearly with increasing strain rate, whereas T-BD increased considerably with increasing strain rate. The effects of temperature and plasticizer concentration on BDT were discussed using a percolation model. The results were in agreement with the experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evolution of crystallinity and polymorphism during hot-drawing of amorphous poly(ether ether ketone ketone) (PEEKK) as a function of strain rate, draw ratio, and temperature was investigated. In modification I, the competition of chain extension and molecular alignment is responsible for the strain rate and temperature dependence. Modification II crystallization is basically controlled by chain extension during stretching. The former can be transformed into the latter via relaxation during stretching or annealing at elevated temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The viscoelastic behavior of phenolphthalein poly(ether ketone) (PEK-C) and its relationship to yielding was studied. The following phenomena were observed: (1) The relaxation behavior at strain near yield closely approximated that at low strain but near the T-g; (2) the temperature and strain rate dependence of yield stress could be modeled by the one-process Eyring theory and the value of the activation volume was the same as that of the glass transition; and (3) according to the Zhurkov-Bueche equation, the cu transition was related to the yield behavior. All these results indicated that the glass transition was the main factor that controlled the yield behavior. (C) 1996 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The static and impact fracture toughness of phenolphthalein polyether ketone (PEK-C) were studied at different temperatures. The static fracture toughness of PEK-C was evaluated via the linear elastic fracture mechanics (LEFM) and the J-integral analysis. Impact fracture toughness was also analyzed using the LEFM approach. Temperature and strain rate effects on the fracture toughness were also studied. The enhancement in static fracture toughness at 70 degrees C was thought to be caused by plastic crack tip blunting. The increase in impact fracture toughness with temperature was attributed two different mechanisms, namely, the relaxation process in a relatively low temperature and thermal blunting of the crack tip at higher temperature. The temperature-dependent fracture toughness data obtained in static tests could be horizontally shifted to match roughly the data for impact tests, indicating the existence of a time-temperature equivalence relationship. (C) 1995 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phenolphthalein polyether ketone (PEK-C) exhibits a marked tensile yield behaviour. The yield stress depends on strain rate and the activation volume V could be evaluated from the data of the yield stress. From the creep and stress relaxation behaviour,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A numerical analysis of galvanic corrosion of hot-dip galvanized steel immersed in seawater was presented. The analysis was based on the boundary element methods (BEMs) coupled with Newton-Raphson iterative technique to treat the nonlinear boundary conditions, which were determined by the experimental polarization curves. Results showed that galvanic current density concentrates on the boundary of steel substrate and zinc coating, and the sacrificial protection of zinc coating to steel substrate results in overprotection of steel cathode. Not only oxygen reduction but also hydrogen reduction could occur as cathode reactions, which probably led up to the adsorption and absorption of hydrogen atoms. Flat galvanized steel tensile sample shows a brittle behavior similar to hydrogen embrittlement according to the SSRT (show strain rate test) in seawater.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stress corrosion cracking (SCC) of LambdaISI 321 stainless steel in acidic chloride solution was studied by slow strain rate (SSR) technique and fracture mechanics method. The fractured surface was characterized by cleavage fracture. In order to clarify the SCC mechanism, the effects of inhibitor KI on SCC behaviour were also included in this paper. A study showed that the inhibition effects of KI on SCC were mainly attributed to the anodic reaction of the corrosion process. The results of strain distribution in front of the crack tip of the fatigue pre-cracked plate specimens in air, in the blank solution (acidic chloride solution without inhibitor KI) and in the solution added with KI measured by speckle interferometry (SPI) support the unified mechanism of SCC and corrosion fatigue cracking (CFC).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which is located at the junction of Eurasian plate, Pacific plate and Indian-Australian plate. It was formed by continent breakup and sea-floor spreading in Cenozoic. The complicated interaction among the three major plates made tectonic movement complex and geological phenomena very rich in this area. The SCS is an ideal place to study the formation and evolution of rifted continental margin and sea-floor spreading since it is old enough to have experienced the major stages of the basin evolution but still young enough to have preserved its original nature. As the demand for energy grows day by day in our country, the deep water region of the northern continental margin in the SCS has become a focus of oil and gas exploration because of its huge hydrocarbon potential. Therefore, to study the rifted continental margin of the SCS not only can improve our understanding of the formation and evolution processes of rifted continental margin, but also can provide theoretical support for hydrocarbon exploration in rifted continental margin. This dissertation mainly includes five topics as follows: (1) Various classic lithosphere stretching models are reviewed, and the continuous non-uniform stretching model is modified to make it suitable for the case where the extension of lithopheric mantle exceeds that of the crust. Then simple/pure shear flexural cantilever model is applied to model the basement geometries of SO49-18 profile in the northern continental margin of the SCS. By fitting the basements obtained by using 2DMove software with modeling results, it is found that the reasonable effective elastic thickness is less than 5km in this region. According to this result, it is assumed that there is weak lower crust in the northern continental margin in the SCS. (2) We research on the methods for stretching factor estimation based on various lithosphere stretching models, and apply the method based on multiple finite rifting model to estimate the stretching factors of several wells and profiles in the northern continental margin of the SCS. (3) We improve one-dimension strain rate inversion method with conjugate gradient method, and apply it to invert the strain rate of several wells in the northern continental margin of the SCS. Two-dimension strain rate forward modeling is carried out, and the modeling results show that effective elastic thickness is a key parameter to control basin’s geometry. (4) We simulate divergent upwelling mantle flow model using finite difference method, and apply this newly developed model to examine the formation mechanism of the northwest and central sub-basin in the SCS. (5) We inverse plate thickness and basal temperature of oceanic lithosphere using sea-floor ages and bathymetries of the North Pacific and the North Atlantic based on varied-parameters plate model, in which the heat conductivity, heat capacity and coefficient of thermal expansion depend on temperature or depth. A new empirical formula is put forward based the inversed parameters, which depicts the relation among sea-floor age, bathymetry and heat flow. Then various similar empirical formulae, including the newly developed one, are applied to examine the sea-floor spread issue in the SCS based on the heat flow and bathymetry data of the abyssal sub-basin.