99 resultados para Steel roof battens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress corrosion cracking (SCC) of LambdaISI 321 stainless steel in acidic chloride solution was studied by slow strain rate (SSR) technique and fracture mechanics method. The fractured surface was characterized by cleavage fracture. In order to clarify the SCC mechanism, the effects of inhibitor KI on SCC behaviour were also included in this paper. A study showed that the inhibition effects of KI on SCC were mainly attributed to the anodic reaction of the corrosion process. The results of strain distribution in front of the crack tip of the fatigue pre-cracked plate specimens in air, in the blank solution (acidic chloride solution without inhibitor KI) and in the solution added with KI measured by speckle interferometry (SPI) support the unified mechanism of SCC and corrosion fatigue cracking (CFC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative investigation of hot dip Zn-25Al alloy, Zn-55Al-Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn-25Al alloy coating is several times more durable than zinc coating of double thickness. At long exposure times, corrosion rate for the Zn-25Al alloy coating remains indistinguishable from that for the Zn-55Al-Si coating of similar thickness in tidal zone, and is two to three times lower than the latter in immersion zone. The decrease in tensile strength suggested that galvanized and Zn-55Al-Si coated steel suffer intense pitting corrosion in immersion zone. The electrochemical tests showed that all these coatings provide cathodic protection to the substrate metal; the galvanic potentials are equal to - 1,050, - 1,025 and - 880 mV (SCE) for zinc, Zn-25Al alloy and Zn-55Al-Si coating, respectively, which are adequate to keep the steel inside the immunity region. It is believed that the superior performance of the Zn-25Al alloy coating is due to its optimal combination of the uniform corrosion resistance and pitting corrosion resistance. The inferior corrosion performance by comparison of the Zn coating mainly results from its larger dissolution rate, while the failure of the Zn-55Al-Si coating is probably related to its higher susceptibility to pitting corrosion in seawater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

25%Al-Zn alloy coating performs better than hot dip galvanized coating and 55%Al-Zn-Si coating with regard to general seawater corrosion protection. This study deals with the interfacial intermetallic layer's growth, which affects considerably the corrosion resistance and mechanical properties of 25%Al-Zn alloy coatings, by means of three-factor quadratic regressive orthogonal experiments, The regression equation shows that the intermetallic layer thickness decreases rapidly with increasing content of Si added to the Zn-Al alloy bath, increases with rise in bath temperature and prolonging dip time. The most effective factor that determined the thickness of intermetallic layer was the amount of Si added to Zn-Al alloy bath, while the effect of bath temperature and dip time on the thickness of intermetallic layer were not very obvious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of alloy elements on corrosion of low alloy steel was studied under simulated offshore conditions. The results showed that the elements Cu, P, Mo, W, V had evident effect on corrosion resistance in the atmosphere zone; Cu, P, V, Mo in the splash zone and Cr, Al, Mo in the submerged zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of simulation experiments on carbon steel (A(3) steel) and low alloy steel (16 Mn steel) in marine atmosphere (MA), seawater (SW) and seabed sediment (SBS) including rough sea sand, fine sea sand and seabed mud were carried out indoors for a year or so by means of individually hanging plates (IHP) and electrically connected hanging plates (ECHP). The corrosion of steels in SBS was mainly due to the macrogalvanic cell effect. The steel plates at the bottom of SBS, as the anode of a macrogalvanic cell, showed the heaviest corrosion with a corrosion rate of up to 0.12 mm/a, approximately equal to that of steel plates in marine atmosphere. The test results showed that the corrosion rates of A(3) and 16 Mn steel in marine environment were in the order: MA > SW > SBS by the IHP method; and MA > SBS > SW by the ECHP method. The corrosion rates of steels in the water/sediment interface were directly proportional to the grain size of the SBS by the ECHP method, but those of steels in the water/sediment interface did not vary with the grain size of SBS by the IHP method. The corrosion rate of low-alloy steel was a little higher than that of carbon steel. The results of this study have important applications for design of offshore steel structures such as oil platform, pier, and port.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical measurement, quantum chemical method, and scanning electron microscopy (SEM) were performed to investigate the inhibitive effect of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 2,4,6-tri(2-pyridyl)-s-triazine(TPT) on the corrosion of mild steel in 1mol.L-1 HCl at room temperature. Impedance spectroscopy measurement showed that the polarization resistance increased and that double layer capacitance decreased with the increase in the inhibitive concentration, and the results of potentiodynamic polarization showed that the inhibitors suppressed both cathodic and anodic processes of steel corrosion without change in the mechanism. Higher the orbital density distribution strength of the lowest unoccupied molecular orbital, higher is the molecule dipole, and lower energy gap between the energy of the highest occupied molecular orbital and the energy of the lowest unoccupied molecular orbital resulted in higher inhibitory efficiency. The results of SEM analysis showed that the metal was protected from aggressive corrosion by the addition of TTC and TPT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibiting effect and mechanism of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylicacid(ciprofloxacin), 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid (norfloxacin) and (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7 H-pyrido(1,2,3-de)-1,4-benzoxazine-6 carboxylic acid (ofloxacin) on the corrosion of mild steel in 1 mol/L HCl have been studied using electrochemical method, quantum chemical method and SEM at 303 K. The potentiodynamic results showed that these compounds suppressed both cathodic and anodic processes of mild steel corrosion in 1 mol/L HCl. The impedance spectroscopy showed that R-p values increased, and C-dl values decreased with the rising of the working concentration. Quantum chemical calculation showed that there was a positive correlation between some inhibitors structure properties and the inhibitory efficiency. The inhibitors function through adsorption followed Langmuir isotherm, and chemisorption made more contribution to the adsorption of the inhibitors on the steel surface compared with physical adsorption. SEM analysis suggested that the metal had been protected from aggressive corrosion because of the addition of the inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound 1-(4,5-dihydro-3-phenylpyridine-1-yl)-2-(1H-1,2,4-triazole-1-yl)ethyl ketone (DTE) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid solutions was investigated by means of weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electronic microscope (SEM). Results obtained revealed that DIE performed excellently as a corrosion inhibitor for mild steel in 1 M hydrochloric acid media and its efficiency attains more than 90.9% at 1.0 x 10(-3) M at 298 K. Polarization curves indicated that the inhibitor behave mainly as mixed-type inhibitor. EIS showed that the charge transfer controls the corrosion process in the uninhibited and inhibited solutions. Adsorption of the inhibitor on the mild steel surface followed Langmuir adsorption isotherm. And the values of the free energy of adsorption Delta G(ads) indicated that the adsorption of DTE molecule was a spontaneous process and was typical of chemisorption. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen permeation behaviours of high strength steel 35CrMo under different cyclic wet-dry conditions have been investigated by using Devanathan-Stachurski's technique. Four electrolytes were used: distilled water, seawater, seawater containing 1500 ppm H2S and seawater containing 0.03 mol L-1 SO2. The corrosion weight loss of 35CrMo in the wet-dry cycles was measured simultaneously. The experimental results show that hydrogen can be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles and the permeation current density during a wet-dry cycle showed a maximum during the drying process. The hydrogen permeation was obviously promoted by Cl- ions, H2S and SO2. The hydrogen permeation in the real marine atmosphere has also been investigated. There is a clear correlation between the amount of hydrogen permeated and the corrosion weight losses. Results show the importance of hydrogen permeation that merits further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacteria in the anaerobic biofilm on rusted carbon steel immersed in natural seawater were characterized by culturing and molecular biology techniques. Two types of anaerobic bacterium, sulfate-reducing bacteria (SRB) Desulfovibrio caledoniensis and iron-reducing bacteria Clostridium sp. uncultured were found. The compositions of the rust layer were also analyzed and we found that iron oxide and sulfate green rust were the major components. To investigate the corrosion mechanisms, electrochemical impedance spectra was obtained based on the isolated sulfate-reducing bacteria and mixed bacteria cultured from rust layer in laboratory culture conditions. We found that single species produced iron sulfide and accelerated corrosion, but mixed species produced sulfate green rust and inhibited corrosion. The anaerobic corrosion mechanism of steel was proposed and its environmental significance was discussed. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new technique was developed for characterisation of stainless steel to intergramilar stress corrosion cracking by atomic force microscopy. The technique proved to be effective in sensitisation identification of AISI 304 stainless steel and might be promising in sensitisation identification of other stainless steels. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of the growing process of sulfate-reducing bacteria (SRB) in seawater system on the medium state and corrosion behavior of carbon steel were studied by detecting solution state parameters and using corrosion electrochemical methods. The growing process of SRB in the seawater shows the three stages of growing, death and residual phases. The solution state parameters of the concentration of sulfide, the pH value and the redox potential changed during the three stages of the SRB growing process. And the corrosion rate of D36 carbon steel was accelerated during the growing phase and stable during the death and residual phases. The results indicate that the medium state and the corrosion rate of the steel do not depend on the number of active SRB, but depend on the accumulation of the metabolism products of SRB. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three triazole derivatives (4-chloro-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (CATM), 4-methoxyl-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (MATM) and 4-fluoro-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (FATM)) have been synthesized as new inhibitors for the corrosion of mild steel in acid media. The inhibition efficiencies of these inhibitors were evaluated by means of weight loss and electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and polarization curves. Then the surface morphology was studied by scanning electron microscopy (SEM). The adsorption of triazole derivatives is found to obey Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The relationship between molecular structure of these compounds and their inhibition efficiency has been investigated by ab initio quantum chemical calculations. The electronic properties such as the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energy levels, energy gap (LUMO-HOMO), dipole moment and molecular orbital densities were computed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two triazole derivatives, 3,4-dichloro-acetophenone-O-1'-(1',3',4'-triazolyl)-methaneoxime (4-DTM) and 2,5-dichloro-acetophenone-O-1'-(1',3',4'-triazolyl)-methaneoxime (5-DTM) were synthesized, and the inhibition effects for mild steel in 1 M HCl solutions were investigated by weight loss measurements, electrochemical tests and scanning electronic microscopy (SEM). The weight loss measurements showed that these compounds have excellent inhibiting effect at a concentration of 1.0 x 10(-3) M. The potentiodynamic polarization experiment revealed that the triazole derivatives are inhibitors of mixed-type and electrochemical impedance spectroscopy (EIS) confirmed that changes in the impedance parameters (R-ct and C-dl) are due to surface adsorption. The inhibition efficiencies obtained from weight loss measurements and electrochemical tests were in good agreement. Adsorption followed the Langmuir isotherm with negative values of the free energy of adsorption Delta G(ads)(o). The thermodynamic parameters of adsorption were determined and are discussed. Results show that both 4-DTM and 5-DTM are good inhibitors for mild steel in acid media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purines and its derivatives, such as, guanine, adenine, 2,6-diaminopurine, 6-thioguanine and 2,6-dithiopurine, were investigated as corrosion inhibitors for mild steel in 1 M HCl solution by weight loss measurements, electrochemical tests and quantum chemical calculations. The polarization curves of mild steel in the hydrochloric acid solutions of the purines showed that both cathodic and anodic processes of steel corrosion were suppressed. The Nyquist plots of impedance expressed mainly as a depressed capacitive loop with different compounds and concentrations. For all these purines, the inhibition efficiency increased by increasing the inhibitor concentration, and the inhibition efficiency orders are 2,6-dithiopurine > 6-thioguanine > 2,6-diaminopurine > adenine > guanine with the highest inhibiting efficiency of 88.0% for 10(-3) M 2,6-dithiopurine. The optimized structures of purines, the Mulliken charges, molecular orbital densities and relevant parameters were calculated by quantum chemical calculations. The quantum chemical calculation results inferred that the adsorption belong to physical adsorption, which might arise from the pi stacking between the pi electron of the purines and the metal surface. (C) 2008 Elsevier Ltd. All rights reserved.