134 resultados para Site classification
Resumo:
IEECAS SKLLQG
Resumo:
The catalytic properties of the passivated, reduced passivated, and fresh bulk molybdenum nitride for hydrazine decomposition were evaluated in a microreactor. The reaction route of hydrazine decomposition over molybdenum nitride catalysts seems to be the same as that of Ir/gamma-Al2O3 catalysts. Below 673 K, the hydrazine decomposes into N-2 and NH3. Above 673 K, the hydrazine decomposes into N-2 and NH3 first, and then the produced NH3 further dissociates into N-2 and H-2. From the in situ FT-IR spectroscopy, hydrazine is adsorbed and decomposes mainly on the Mo site of the Mo2N/gamma-Al2O3 catalyst. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A 2.5-D and 3-D multi-fold GPR survey was carried out in the Archaeological Park of Aquileia (northern Italy). The primary objective of the study was the identification of targets of potential archaeological interest in an area designated by local archaeological authorities. The second geophysical objective was to test 2-D and 3-D multi-fold methods and to study localised targets of unknown shape and dimensions in hostile soil conditions. Several portions of the acquisition grid were processed in common offset (CO), common shot (CSG) and common mid point (CMP) geometry. An 8×8 m area was studied with orthogonal CMPs thus achieving a 3-D subsurface coverage with azimuthal range limited to two normal components. Coherent noise components were identified in the pre-stack domain and removed by means of FK filtering of CMP records. Stack velocities were obtained from conventional velocity analysis and azimuthal velocity analysis of 3-D pre-stack gathers. Two major discontinuities were identified in the area of study. The deeper one most probably coincides with the paleosol at the base of the layer associated with activities of man in the area in the last 2500 years. This interpretation is in agreement with the results obtained from nearby cores and excavations. The shallow discontinuity is observed in a part of the investigated area and it shows local interruptions with a linear distribution on the grid. Such interruptions may correspond to buried targets of archaeological interest. The prominent enhancement of the subsurface images obtained by means of multi-fold techniques, compared with the relatively poor quality of the conventional single-fold georadar sections, indicates that multi-fold methods are well suited for the application to high resolution studies in archaeology.
Resumo:
Nucleosides in human urine and serum have frequently been studied as a possible biomedical marker for cancer, acquired immune deficiency syndrome (AIDS) and the whole-body turnover of RNAs. Fifteen normal and modified nucleosides were determined in 69 urine and 42 serum samples using high-performance liquid chromatography (HPLC). Artificial neural networks have been used as a powerful pattern recognition tool to distinguish cancer patients from healthy persons. The recognition rate for the training set reached 100%. In the validating set, 95.8 and 92.9% of people were correctly classified into cancer patients and healthy persons when urine and serum were used as the sample for measuring the nucleosides. The results show that the artificial neural network technique is better than principal component analysis for the classification of healthy persons and cancer patients based on nucleoside data. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Decision tree classification algorithms have significant potential for land cover mapping problems and have not been tested in detail by the remote sensing community relative to more conventional pattern recognition techniques such as maximum likelihood classification. In this paper, we present several types of decision tree classification algorithms arid evaluate them on three different remote sensing data sets. The decision tree classification algorithms tested include an univariate decision tree, a multivariate decision tree, and a hybrid decision tree capable of including several different types of classification algorithms within a single decision tree structure. Classification accuracies produced by each of these decision tree algorithms are compared with both maximum likelihood and linear discriminant function classifiers. Results from this analysis show that the decision tree algorithms consistently outperform the maximum likelihood and linear discriminant function classifiers in regard to classf — cation accuracy. In particular, the hybrid tree consistently produced the highest classification accuracies for the data sets tested. More generally, the results from this work show that decision trees have several advantages for remote sensing applications by virtue of their relatively simple, explicit, and intuitive classification structure. Further, decision tree algorithms are strictly nonparametric and, therefore, make no assumptions regarding the distribution of input data, and are flexible and robust with respect to nonlinear and noisy relations among input features and class labels.
Resumo:
National Natural Science Foundation of China [40771205]; National Science Fund for Distinguished Young Scholars [40625002]; Chinese Academy of Sciences [KZCX2-YW-315]
Resumo:
Over last two decades, numerous studies have used remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) sensors to map land use and land cover at large spatial scales, but achieved only limited success. In this paper, we employed an approach that combines both AVHRR images and geophysical datasets (e.g. climate, elevation). Three geophysical datasets are used in this study: annual mean temperature, annual precipitation, and elevation. We first divide China into nine bio-climatic regions, using the long-term mean climate data. For each of nine regions, the three geophysical data layers are stacked together with AVHRR data and AVHRR-derived vegetation index (Normalized Difference Vegetation Index) data, and the resultant multi-source datasets were then analysed to generate land-cover maps for individual regions, using supervised classification algorithms. The nine land-cover maps for individual regions were assembled together for China. The existing land-cover dataset derived from Landsat Thematic Mapper (TM) images was used to assess the accuracy of the classification that is based on AVHRR and geophysical data. Accuracy of individual regions varies from 73% to 89%, with an overall accuracy of 81% for China. The results showed that the methodology used in this study is, in general, feasible for large-scale land-cover mapping in China.
Resumo:
Semisupervised dimensionality reduction has been attracting much attention as it not only utilizes both labeled and unlabeled data simultaneously, but also works well in the situation of out-of-sample. This paper proposes an effective approach of semisupervised dimensionality reduction through label propagation and label regression. Different from previous efforts, the new approach propagates the label information from labeled to unlabeled data with a well-designed mechanism of random walks, in which outliers are effectively detected and the obtained virtual labels of unlabeled data can be well encoded in a weighted regression model. These virtual labels are thereafter regressed with a linear model to calculate the projection matrix for dimensionality reduction. By this means, when the manifold or the clustering assumption of data is satisfied, the labels of labeled data can be correctly propagated to the unlabeled data; and thus, the proposed approach utilizes the labeled and the unlabeled data more effectively than previous work. Experimental results are carried out upon several databases, and the advantage of the new approach is well demonstrated.
Resumo:
Orthogonal neighborhood-preserving projection (ONPP) is a recently developed orthogonal linear algorithm for overcoming the out-of-sample problem existing in the well-known manifold learning algorithm, i.e., locally linear embedding. It has been shown that ONPP is a strong analyzer of high-dimensional data. However, when applied to classification problems in a supervised setting, ONPP only focuses on the intraclass geometrical information while ignores the interaction of samples from different classes. To enhance the performance of ONPP in classification, a new algorithm termed discriminative ONPP (DONPP) is proposed in this paper. DONPP 1) takes into account both intraclass and interclass geometries; 2) considers the neighborhood information of interclass relationships; and 3) follows the orthogonality property of ONPP. Furthermore, DONPP is extended to the semisupervised case, i.e., semisupervised DONPP (SDONPP). This uses unlabeled samples to improve the classification accuracy of the original DONPP. Empirical studies demonstrate the effectiveness of both DONPP and SDONPP.
Resumo:
Inspired by human visual cognition mechanism, this paper first presents a scene classification method based on an improved standard model feature. Compared with state-of-the-art efforts in scene classification, the newly proposed method is more robust, more selective, and of lower complexity. These advantages are demonstrated by two sets of experiments on both our own database and standard public ones. Furthermore, occlusion and disorder problems in scene classification in video surveillance are also first studied in this paper.