398 resultados para Self-assembled films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the electronic energy levels and probability distribution of vertically stacked self-assembled InAs quantum discs system in the presence of a vertically applied electric field. This field is found to increase the splitting between the symmetric and antisymmetric levels for the same angular momentum. The field along the direction from one disc to another affects the electronic energy levels similarly as that in the opposite direction because the two discs are identical. It is obvious from our calculation that the probability of finding an electron in one disc becomes larger when the field points from this disc to the other one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new self-assembled quantum dots system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix has been fabricated. The photoluminescence linewidth increases with increasing temperature, which is very different from normal In(Ga)As/GaAs quantum dots. The results are attributed to a higher energy of the wetting layer which breaks the carrier transfer channel between dots and keeps the dots more isolated from each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the oscillator strengths of the optical transitions of the vertically stacked self-assembled InAs quantum discs. The oscillator strengths change evidently when the two quantum discs are far apart from each other. A vertically applied electric held affects the oscillator strengths severely, while the oscillator strengths change slowly as the radius of one disc increases. We also studied the excitonic energy of the system, including the Coulomb interaction. The excitonic energy increases with the increasing radius of one disc, but decreases as a vertically applied electric field increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we have investigated the temperature dependence of photoluminescence (PL) from self-assembled InAs quantum dots (QDs) covered by an InAlAs/InGaAs combination layer. The ground state experiences an abnormal variation of PL linewidth from 15 K up to room temperature. Meanwhile, the PL integrated intensity ratio of the first excited state to the ground state for InAs QDs unexpectedly decreases with increasing temperature, which we attribute to the phonon bottleneck effect. We believe that these experimental results are closely related to the partially coupled quantum dots system and the large energy separation between the ground and the first excited states. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagonal self-assembled InAs quantum wire (QWR) arrays with the stacked InAs/In0.52Al0.48As structure are grown on InP substrates, which are (001)-oriented and misoriented by 6degrees towards the [100] direction. Both the molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE) techniques are employed. Transmission electron microscopy reveals that whether a diagonal InAs QWR array of the stacked InAs/InAlAs is symmetrical about the growth direction or not depends on the growth method as well as substrate orientation. Asymmetry in the diagonal MEE-grown InAs QWR array can be ascribed to the influence of surface reconstruction on upward migration of adatoms during the self-assembly of the InAs quantum wires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the effect of InAlAs/InGaAs cap layer on the optical properties of self-assembled InAs/GaAs quantum dots (QDs). We find that the photoluminescence emission energy, linewidth and the energy separation between the ground and first excited states of InAs QDs depend on the In composition and the thickness of thin InAlAs cap layer. Furthermore, the large energy separation of 103 meV was obtained from InAs/GaAs QDs with emission at 1.35 pm at room temperature. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated a quantum dot (QD) structure for long-wavelength temperature-insensitive semiconductor laser by introducing a combined InAlAs and InGaAs overgrowth layer on InAs/GaAs QDs. We found that QDs formed on GaAs (100) substrate by InAs deposition followed by the InAlAs and InGaAs combination layer demonstrate two effects: one is the photoluminescence peak redshift towards 1.35 mum at room temperature, the other is that the energy separation between the ground and first excited states can be up to 103 meV. These results are attributed to the fact that InAs/GaAs intermixing caused by In segregation at substrate temperature of 520 degreesC can be considerably suppressed by the thin InAlAs layer and the strain in the quantum dots can be reduced by the combined InAlAs and InGaAs layer. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high density of 1.02 x 10(11) cm(-2) of InAs islands with In(0.15)Gao(0.85)As underlying layer has been achieved on GaAs (10 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 mum photoluminescence (PL) from InAs islands with In(0.15)Gao(0.85)As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of growth temperature on the optical properties of self-assembled In0.65Al0.35As/Al0.35Ga0.65As quantum dots is studied using photoluminescence and electroluminescence spectra. With the growth temperature increasing from 530 to 560 degreesC, the improvement of optical and structural quality has been observed. Furthermore, edge-emitting laser diodes with three stacked InAlAs quantum dot layers grown at different temperature are processed, respectively. For samples with quantum dots grown at 560 degreesC, the continuous wave operation is obtained up to 220 K, which is much higher than that of ones with InAlAs islands grown at 530 degreesC and that of the short-wavelength quantum-dot laser previously reported. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the theoretical study of the interaction of the quantum dot (QD) exciton with the photon waveguide models in a semiconductor microcavity. The InAs/GaAs self-assembled QD exciton energies are calculated in a microcavity. The calculated results reveal that the electromagnetic field reduces the exciton energies in a semiconductor microcavity. The effect of the electromagnetic field decreases as the radius of the QD increases. Our calculated results are useful for designing and fabricating photoelectron devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The size and shape Evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0-ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9-ML deposition on GaAs(1 0 0) substrate. Based on comparisons with the evolution of InAs islands on single layer samples at late growth stage, the bimodal size distribution of InAs islands at 2.5-ML InAs coverage and the formation of larger InAs quantum dots at 2.9-ML deposition have been observed on the second InAs layer. The further cross-sectional transmission electron microscopy measurement indicates the larger InAs QDs: at 2.9-ML deposition on the second layer are free of dislocation. In addition, the interpretations for the size and shape evolution of InAs/GaAs QDs on the second layer will be presented. (C) 2001 Elsevier Science B.V. All lights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs and InAs/InAlAs/InP quantum dots (QDs) and quantum wires (QWRs) have been studied. By adjusting growth conditions, surprising alignment. preferential elongation, and pronounced sequential coalescence of dots and wires under specific condition are realized. The lateral ordering of QDs and the vertical anti-correlation of QWRs are theoretically discussed. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 3.6 W from both uncoated facets is achieved fi-om vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). A RT CW output power of 0.6 W/facet ensures at least 3570 h lasing (only drops 0.83 dB). (C) 2001 Elsevier Science B.V, All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated properties of intraband absorption in In-x Ga1-xAs quantum dots (QDs) superlattice. Energy levels in conduction band in QDs were calculated for a cone-shaped quantum dot associated with coupling between QDs in the framework of the effective-mass envelope-function theory. Theoretical results demonstrated that energy levels in conduction band were greatly affected by the vertical coupling between quantum dots, which can be used to modify transition wavelength by adjusting the space layer thickness. Intraband transition is really sensitive to normal incidence and the absorption peak intensity is dependent on the polarization. A satisfying agreement is found between theoretical and experimental values. This result opens up prospects for the fabrication of QDs infrared detectors, which work at atmospheric windows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs nanostructures on (0 0 1) InP substrate have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). It is found that the morphologies and PL properties of InAs nanostructures depend strongly on the growth condition. For the same buffer layer, elongated InAs quantum wires (QWRs) and no isotropic InAs quantum dots (QDs) can be obtained using different growth conditions. At the same time, for InAs quantum dots, PL spectra also show several emission peaks related to different islands size. Theoretical calculation indicated that there are size quantization effects in InAs islands. (C) 2001 Elsevier Science B.V. All rights reserved.