86 resultados para Seasons.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plateau zokor (Myospalax baileyi) is one of the blind subterranean mole rats that spend their life solely underground in scaled burrows. It is one of the special species of the Qinghai-Tibet plateau. In their burrows, oxygen is low and carbon dioxide is high and their contents fluctuate with the change of seasons, soil types, rain and depth of burrows. However, plateau zokors show successful adaptation to that extreme environment. In this study, their adapting mechanisms to the hypoxic hypercapnic environment were analyzed through the comparison of their blood-gas properties with that of pikas (Ochotona curzniae) and Sprague-Dawley rats. The results indicated that plateau zokors had higher red blood corpuscle counts (8.11 +/- 0.59 (10(12)/L)) and hemoglobin concentrations (147 +/- 9.85 g/L), but hematocrit (45.9 +/- 3.29%) and mean corpuscular volume (56.67 +/- 2.57 fL) were lower than the other rodents. Their arterial blood and venous blood pH were 7.46 +/- 0.07 and 7.27 +/- 0.07. Oxygen pressure in arterial blood of plateau zokors was about 1.5 times higher than that of pikas and rats, and it was 0.36 and 0.26 times in their venous blood. Partial pressure for carbon dioxide in arterial and venous blood of plateau zokors was 1.5-fold and 2.0-fold higher, respectively, than in rats and pikas. Oxygen saturation of plateau zokors was 5.7 and 9.3 times lower in venous blood than that of pikas and rats, respectively. As result, the difference of oxygen saturation in arterial blood to venous blood was 2- and 4.5-fold higher in plateau zokors as that of pikas and rats, respectively. In conclusion, plateau zokors had a high tolerance to pH changes in tissues, together with strong capabilities to obtain oxygen from their hypoxic-hypercapnic environment. (c) 2006 Published by Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forty-five male yaks (born April 2001) were studied to determine how seasonal changes on the Qinghai-Tibetan plateau affected BW and body composition. Thirty yaks were weighed monthly from birth to 26 mo of age to determine seasonal changes in BW. The remaining 15 yaks were allocated randomly to five groups (three yaks per group), designated for slaughter at 13, 15, 18, 22, and 25 mo to measure seasonal effects on body chemical composition. All yaks were grazed on the alpine-meadow grassland of the plateau without any supplementation. All BW and body composition data were calculated on an individual basis. Body weight and body composition data were both compared across seven growth periods spanning 2 yr and defined by season. From April (birth) to December 2001 of the first growing season, yak BW increased (P < 0.01); however, during the subsequent cold season (December 2001 to May 2002), BW decreased (P < 0.01). The second growing season ran from May 2002 (13 mo of age) to October 2002 (18 mo of age), and the second live weight-loss season ran from October 2002 until May 2003. The weight loss experienced by yaks during the first weight loss season was 25.64% of the total weight gain in the first growing season. The weight loss experienced by yaks during the second weight-loss season was 29.73% of the total weight gain in the second growing season. Energy retention in the second growing season was 291.07 MJ, 50.8% of which was consumed during the subsequent cold season. Energy accumulation in the summer (from May to July) and fall (from July to October) of the second growing season did not differ (5.01 and 6.30 MJ/kg of EBW gain, respectively; P = 0.63). The energy mobilized during the second winter (from October 2002 to February 2003) was 16.49 MJ/kg of EBW, and in the second spring (from February to May 2003), it was 9.06 MJ/kg of EBW. These data suggest that the decrease in grazing yak BW during the first cold season is much less than during the second cold season, and that the energy content per unit of BW mobilized is greater (P = 0.02) in winter than in spring. Results from this study demonstrate highly efficient compensatory growth in grazing yaks following the first weight loss period during the first cold season. This benefit could be exploited by herders to improve yak production. Yaks may have developed a type of self-protection mechanism to overcome the long cold seasons in the Qinghai-Tibetan plateau.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the alpine region of the Tibetan Plateau, five perennial grass cultivars, Bromus inermis (B), Elymus nutans (E), Clinelymus nutans (C), Agropyron cristatum (A), and Poa crymophila (P) were combined into nine communities with different compositions and ratios, B+C, E+A, B+E+A, E+B+C,C+E+A,B+E+C+A,B+C+A+P,B+E+A+P and E+C+A+P. Each combination was sown in six 10 X 10 m plots with three hand-weeded plots and three natural-growing plots in a completely randomised design in 1998. A field experiment studied the performance of these perennial grass combinations under the competitive interference of annual weeds in 3 consecutive years from 1998 to 2000. The results showed that annual weeds occupied more space and suppressed the growth of the grasses due to earlier germination and quicker growth in the establishment year, but this pattern changed in the second and third years. Leaf area indexes (LAIs) of grasses were greatly decreased by the competitive interference of weeds, and the negative effect of weeds on LAIs of grasses declined and stabilised in the second and third years. E+B+C, B+E+C+A, and B+E+A+P possessed relatively higher LAIs (P < 0.05) among all grass combinations and their LAIs were close to five when the competitive interference of weeds was removed. Grasses were competitively inferior to weeds in the establishment year, although their competitive ability (aggressivities) increased throughout the growing season. In the second and third years, grasses were competitively superior to weeds, and their competitive ability decreased from May until August and increased in September. Dry matter (DM) yields of grasses were reduced by 29.8-74.1% in the establishment year, 11.0-64.9% in the second year, and 16.0-55.8% in the third year by the competitive interference of weeds. B+E+C+A and B+E+A+P can produce around 14 t/ha of DM yields, significantly higher (P < 0.05) than the production of the other grass combinations in the second and third years after the competitive interference of weeds was removed. It was preliminarily concluded that removal of competitive interference of weeds increased the LAIs of all grass swards and improved the light interception of grasses, thus promoting the production of perennial grass pastures. The germination stage of the grasses in the establishment year was the critical period for weeding and suppression of weeds should occur at an early stage of plant growth. The grass combinations of B+E+C+A and B+E+A+P were productive and can be extensively established in the alpine regions of the Tibetan Plateau. Two or three growing seasons will be needed before determining success of establishment of grass mixtures under the alpine conditions of the Tibetan Plateau.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the alpine region of the Qinghai-Tibetan Plateau four indigenous perennial grass species Bromus inermis (BI), Elymus sibiricus (ES), Elymus nutans (EN) and Agropyron cristatum (AC) were cultivated as three mixtures with different compositions and seeding rates, BI + EN, BI + ES + AC and BI + ES + EN + AC. From 1998 to 2001 there were three different weeding treatments: never weeded (CK); weeded on three occasions in the first year (1-y) and weeded on three occasions in both the first and second year (2-y) and their effect of grass combination and interactions on sward productivity and persistence was measured. Intense competitive interference by weedy annuals reduced dry matter (DM) yield of the swards. Grass combination significantly affected sward DM yields, leaf area index (LAI) and foliar canopy cover and also species composition DM and LAI, and species plant cover. Interaction between weeding treatments and grass combination was significant for sward DM yield, LAI and canopy cover, but not on species composition for DM, LAI or species plant cover. Grass mixture BI + ES + EN + AC gave the highest sward DM yield and LAI for both weeding and non-weeding treatments. Species ES and EN were competitively superior to the others. Annual weedy forbs must be controlled to obtain productive and stable mixtures of perennial grasses, and germination/emergence is the most important time for removal. Weeding three times (late May, late June and mid-July) in the establishment year is enough to maintain the production and persistence of perennial grass mixtures in the following growing seasons. Extra weeding three times in the second growing year makes only a slight improvement in productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used the eddy covariance method to measure the M exchange between the atmosphere and an alpine meadow ecosystem (37degrees29-45'N, 101degrees12-23'E, 3250m a.s.l.) on the Qinghai-Tibetan Plateau, China in the 2001 and 2002 growing seasons. The maximum rates Of CO2 uptake and release derived from the diurnal course Of CO2 flux (FCO2) were -10.8 and 4.4 mumol m(-2) s(-1), respectively, indicating a relatively high net carbon sequestration potential as compared to subalpine coniferous forest at similar elevation and latitude. The largest daily CO2 uptake was 3.9 g cm(-2) per day on 7 July 2002, which is less than half of those reported for lowland grassland and forest at similar latitudes. The daily CO2 uptake during the measurement period indicated that the alpine ecosystem might behave as a sink of atmospheric M during the growing season if the carbon lost due to grazing is not significant. The daytime CO2 uptake was linearly correlated with the daily photosynthetic photon flux density each month. The nighttime averaged F-CO2 showed a positive exponential correlation with the soil temperature, but apparently negative correlation with the soil water content. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glaciers in west China are the sources of the major great rivers in Asia, and the solid water resources are crucial to China and South Asia. Black carbon (BC) results in very complex climate effects not only in the atmosphere, but accelerates the melting after its deposit on the surface of snow/ice. As the main distributed area of glaciers in China, the Tibetan Plateau (TP) and Xinjiang region are abutted by South Asia, Central Asia, and Russia, and east China, and the atmospheric environment would be influenced by the BC emitted from these regions. Whereas, the BC’s temporal and spatial distributions for concentration in the mid and top troposphere in west China, its transport, and its radiative forcing after deposited on the snow/ice surface are not well understood at the present. In the field, we collected samples from surface snow, snow pits, ice core, and aerosol in the glaciers, analyzed BC content mainly by the thermo-oxidized method in the laboratory, and discussed temporal and spatial distributions for BC concentrations in glaciers, the transport, and its impacts on the environment. Several conclusions were derived as follows: 1_Spatial distribution and the impact on albedos for BC concentrations in snow/ice: the BC concentrations in the surface snow for the investigated glaciers could be placed in areas, the Tianshan Mountains > the central TP > the Pamirs > the Qilian Mountians > the Himalayas. This distribution could be attributed to the elevation of the glaciers, the topography of the TP, and more regional emissions. Probably significant impacts on the albedos of the glacier surface could be caused by BC deposits, and the estimated reduced albedos on the glaciers are 9.8% (the Zhadang glacier), 8.7% (the Miao’ergou Riverhead No.3 glacier), and 6.8% (the Kuitun River Haxilegen No.48 glacier), and 6.2% (the Dongkemadi glacier), and 5.3% (the La’nong glacier), and 4.2% (the Muztagata glacier), etc. 2_The temporal variance of BC concentrations in ice of the East Rongbuk Glacier (ERG) and its climatic implications: major cations and anions (e.g., SO42- and Ca2+) concentrations in aerosols during summer monsoon seasons showed their close relationships with the sources of air masses, in which the variance of SO42- concentrations suggested the atmospheric environment over the ERG was significantly influenced by the aerosols from South Asia. BC record based on an ice core suggested its deposit was dominantly transported by monsoons in summers and by westerlies in other seasons, and the BC from South Asia in summers dominated the varying trend of its concentrations in the ice core and caused higher concentrations in summers than those in other seasons. In the past 50 yrs, BC concentrations showed fluctuations, whereas showed an increasing tread in the most recent decade, and exceeded 50 μg kg-1 in the summer of 2001; correspondingly, the radiative forcing caused by BC showed an increasing trend since 1990s, and exceeded 4.5 W m-2 in the summer of 2001. 3_Cabonaceous aerosols in the Nam Co region: organic carbon (OC) concentration accounted for ~95% and BC for ~5% in the total carbonaceous aerosol concentration, which was significantly influenced by summer precipitations. OC was dominantly derived from fossil fuel burning and BC from both fossil fuel and biomass burning. Trajectory analysis and aerosol optical depth suggested the atmospheric environment in the Nam Co region was most probably influenced by the emissions from South Asia. The potential source regions of air pollutants in the Nam Co regions in summers might be Bangladesh and east India, and in winters might be the Indo-gangetic basin. The scavenging ratio of atmospheric BC by rainfalls was less than those at other sites. West China is a less-developed region for industry, where BC concentrations in the atmosphere and snow/ice could be significantly influenced by the emissions from the abutted regions with rising industries (South Asia, Central Asia, and Russia). For example, snow/ice BC concentrations in the glaciers of the Parmirs, the Tianshan Mountains, and the Qilian Mountains in the northeast margin of the TP might be more influenced by the emissions from Centrial Asia (transported by the westerlies), those in the glaciers of the Himalayas might be more influenced by the emissions from South Asia (transported by the monsoons and the westerlies), and atmospheric carbonaceous aerosols might also be more influenced by the emissions from South Asia (transported by the monsoons and the westerlies). The BC concentrations in some glaciers might cause significant impacts on the albedos for the glaciers, and therefore enhanced the radiative forcings, for example, the ERG. The research on the relationships among atmospheric and snow/ice BC and its radiative forcing, variance of snow cover, mass balance of glaciers, and climate forcing would be needed in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetosphere-ionosphere coupling is mainly manifested by the trans- porting processes of energy into the ionosphere , the energy is carried by solar wind and firstly accumulate at the magnetosphere, and the coupling processes also significantly include the interaction between the magnetosphere and ionosphere for mass and energy. At the quiet condition, energy is delivered by the large-scale convection of the geomagnetic field; the huge energy from solar wind bulk will be injected into and consumed at the near magnetosphere and ionosphere by the geomagnetic storm and substorm activities. Aurorae and FACs (Field-aligned currents) are the important phenomena in the coupling processes. In the present work, firstly, we analyze the activity characteristics of auroral precipitating particle, secondly, we study the distribution characters of large-scale field aligned currents (LS FACs) at storm-time using the observations from different satellites at different altitudes. Finally, we investigate the evolution of the geomagnetic field configuration at the nightside sector on the onset of the expansion phase in a substorm event, the substorm event happened at 0430UT to 0630UT on 8th Nov. 2004. The main results as follows: At the first, the data of the estimated power input (EPI) of auroral particles from NOAA/POES (Polar orbiting environmental satellite) for some 30 years have been analyzed. The variation tendencies of the EPI generally coincide with aa, AE and Dst indices. The annual variation of EPI shows equinox peaks and an asymmetric-activity with a higher peak in the winter-hemisphere than in the summer-hemisphere. The diurnal UT variations are different from north and south hemisphere: for north hemisphere, the peak appears at 1200UT, and the relative deviation is 22% to the daily average of the north hemisphere. For south hemisphere, the maximal deviation is 22% at 2000UT. So the diurnal variation of EPI is more dominant than the annual variation which maximal deviation is 3% to 12% for different seasons. Studies on correlations of the hourly average of EPI, Pa, with AE and Dst indices show a correlation coefficient r=0.74 of Pa and AE, and r=-0.55 of Pa and Dst. The hourly EPIs for north and south polar regions, NPa and SPa, show a north-south asymmetry with a higher correlation of SPa and AE (or Dst). Time delays of EPI with respect to magnetic indices are examined, the maximum correlation coefficient of Pa with AE (r=0.78) occurs when the time delay =0, suggesting a synchronous activity of auroral electrojet and auroral precipitating particles, while =1-2h, the correlation coefficient of Pa with Dst is maximum (r=0.57), suggesting that the activity of auroral particle precipitating may influence the ring current on some extent. Sencondly, we use the high-resolution magnetic field vector data of the CHAMP satellite to investigate the distribution of large-scale FACs during the great magnetic storm on 7th to 8th Nov. 2004. The results show that, whether in the northern or southern hemisphere, the number and density of large-scale FACs during the main-phase are more and bigger than these during the recover-phase, and the number of large-scale FACs in morning sector obviously is more than that in afternoon sector. In terms of the magnetic indices, we find that large-scale FACs in morning sector significantly affected by the substorm activities, while in afternoon sector the large-scale FACs mainly indicate the fluctuations of the ring-current in storm time. Accordingly to the former studies, similarly, we find that in the morning sector, the scale of the large-scale FACs move to the high-latitude region, and in the afternoon sector, large-scale FACs distinctly expand to the low-latitude region. During the time periods that the NOAA/POES auroral precipitating particle power data temporally correspond to the large-scale FACs, the more the power of auroral particle is, the more and bigger the number and density of FACs are. At the same time, we use the magnetic field vector data of POLAR obtain a good form of region 1, region 2, and three pieces of cusp FACs during a single transit at 1930UT-2006UT on 07th. And the characteristics of simultaneous electric field and energy particles observations on Polar are coincide with the five FACs pieces. Finally, by means of the observation of Cluster 4 and Goes 10、 Goes 12, we analyze the evolution process of the change of the magnetic field configuration at night sector at the expansion phase of a substorm event which happened during 0430UT to 0630UT on 8th Nov. 2004, we find that the times of the beginning of the polarizations of magnetic field are observed from Goes 10 to Goes 12 then to Cluster 4. So, at the synchronous orbit ( 6.6 RE) to 10RE distance scale of the neutral sheet, the current disruption spread tailward. Simultaneously, the strengthen of the FACs deduced from these satellites’ magnetic field observations are almost consistent with the times of polarizations, as well as the high energy particles injection and the electric field dominant variation. The onset times determined by the magnetic field polarizations from these satellites are all ahead of the onset time that confirmed from the auroral electrojet indices. So, these characters of different observations can be used as the criterions to determine the onset time for the substorms of such type as we studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through the statistical analysis of the geomagnetic data from BMT in 2005, we get the period and frequency characteristic of Pc6 micropulsation in Beijing area. Pc6 micropulsation is a frequently occurred phenomenon in geomagnetism but we still do not have adequate knowledge to it. In this paper, we found that the periods of Pc 6 micropulsation focus on 10 to 30 minutes. They do not have distinct seasonal variation but obtain a little lower occurrence in the winter than other seasons. Then we analysis the geomagnetic data of BMT from 1998 to 2006, which is a solar activity cycle and get some results about the relationship between Pc6 micropulsation and solar activities. In this way, we discuss more about the origin and evolvement mechanism of the Pc6 micropulsation. When the solar is more active than usual years, there are more occurrences of Pc6 micropulsaton observed. The occurrence of Pc6 micropulsation is associated with geomagnetic index. With the increase of AE and Kp index, there are more occurrences of Pc6 micropulsation. Furthermore, we make use of the Doppler data from Peking University in 2005 make a comparative research between TID events and Pc6 micropulsation. There are 42 events can satisfy our request during Dec.23, 2004 to Mar.11, 2006. After the data analysis, we can draw a fundamental conclusion that there are positive links between Pc6 micropulsation and TID event. Moreover, when TID and Pc6 micropulsation occur simultaneously, their occurrences have a positive relationship with AE and Kp index. So we suppose there might be the same source of Pc6 micropulsation and TID event. Finally, we make use of two meridian geomagnetic stations network which has a distance about 1700 km to investigate the transmission characteristic of Pc6 micropulsation when Pc6 micropulsation and TID happened together. We found at that time Pc6 micropulsation is a local phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotope compositions of land snail shells have a great potential as an indicator of paleoclimatic and paleoenvironmental changes. However, some key issues, such as the relationship of carbon isotope between snail food and local vegetation, and the uncertainty of the dominant factors about snail body fluid changes in oxygen isotope composition, remain less well known, strongly limiting shell isotopic application. In this study, we measure the stable isotope compositions on the shells of both live snails and fossils collected from the Chinese Loess Plateau and a loess sequence at Mangshan, Xingyang, respectively. Based on the analyses, the association of the stable isotope compositions of land snail shells with their growing seasons is investigated. In addition, the climatic and environmental significances of isotopic differences among several snail species are discussed. The main results and conclusions are presented as follows: 1. δ18O values for the shell lip samples of Bradybaena ravida redfieldi range from -6.79‰ to -1.92‰, and parallels to the monthly changes of local rain water δ18O, temperature and humidity. The compatibility of shell lip δ18O with monthly modeled shell δ18O indicates that the shell lip δ18O changes are mainly resulted from the 18O variations of rain-water. The shells of a land snail growing in spring could be enriched in 18O, and those growing in summer depleted in 18O. 2. Carbon isotope compositions of snail shells are controlled by their diet, which is affected by the relative proportion of C3 to C4. There are some differences in carbon isotopic compositions among different snail species, especially between P. orphana and V. tenera or P. aeoli. Shell δ13C for P. orphana is the most positive with an average of -5.88 ± 2.54 ‰. The C4 plant fraction of the food for “cold-aridiphilous” taxa, P. aeoli and V. tenera, is distinctly lower than that for “thermo-humidiphilous” taxa, P. orphana, indicating that summer is likely to be the main active season of P. orphana and spring of P. aeoli and V. tenera. Therefore, some discrepancy of carbon isotopic compositions among different species may be related to snail active season. 3. δ13C values among different species have a certain degree of positive correlation, which may be influenced by local vegetation ecosystem. δ13C value of the snail shells (especially P. orphana) shows an eastward increasing trend and consists with the variations of C4 plants biomass in Loess Plateau. The result shows that the carbon isotope in local vegetation ecosystem is one of the main factors influencing δ13C values of snail food. Therefore, both carbon isotopes of local vegetation ecosystem and snail active season contribute to the carbon isotopic differences among different snail species and in different areas. 4. δ13C values of living snail shells and soil organic matter have a positive correlation with each other, which further supports the view that carbon isotope in local vegetation ecosystem is one of the main factors influencing δ13C values of snail food. However, the range of δ13C values of snail food for various species in response to carbon isotope in local vegetation ecosystem is different. It is suggested that 13C enrichment of snail shells relative to local vegetation ecosystem has a potential to indicate snail active season and the degree of climate temperature and humidity. 5. There is a significant negative correlation between carbon and oxygen isotopic compositions of living snail shells in Loess Plateau. This result further supports that snail active season can be inferred based on the shell carbon and oxygen isotopic compositions. Moreover, there are some positive correlations between mean annual temperature and differences of shell δ13C values ( 13CV. tenera-P. orphana) and that of δ18O values ( 18OV. tenera-P. orphana) for P. orphana, a typical “thermo-humidiphilous” taxa, and V. tenera, a typical “cold-aridiphilous” taxa, respectively. It shows that  13CV. tenera-P. orphana and  18OV. tenera-P. orphana may have a potential to indicate mean annual temperature or the length of biological growing season. 6. Stable isotopes of land snail shell in the Mangshan loess sequence show that the shell δ18O value of “cold-aridiphilous” taxa V. tenera is more positive than “thermo-humidiphilous” taxa P. orphana and δ13C value of the former is more negative than the latter. In addition, the shell δ18O value of V. tenera varies significantly in different period. During the last glacial maximum, its δ18O value with an average of -7.89 ‰ is more negative than that (-5.88 ‰) from the last deglaciation to the early Holocene. This phenomenon indicates that its growing season during different period is significantly different. It tends to grow in summer in last glacial maximum. With climate warming, it prefers growing in spring with relatively low temperature. While the shell δ18O value of P. orphana varies in a little range, which shows that its activity season is shorter and mainly in summer. These results further support that the change of the snail growing season is one of the main factors of differences of carbon isotopic compositions among different snail species and varies with time. Furthermore, it is consistent that changes in magnetic susceptibility and trend of differences of shell δ18O values and δ13C values respectively between the two snail fossils. It is further testified that 13CV. tenera-P. orphana and  18OV. tenera-P. orphana may have a potential to indicate mean annual temperature or the length of biological growing season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the high resolution, stalagmite laminae can play an important role in the paleoclimate reconstructions. However, few investigations for the formation mechanisms of stalagmite lamilae have been done. Based on two-year observation on calcite growth rate at the drip sites, three-year monitoring of hydrodynamics, physics and chemistry of drip waters at different drip sites and the surrounding environments inside and outside the Beijing Shihua Cave, the seasonal variations of calcite growth rate are revealed and the results can be concluded as follows: 1. The drip waters inside the Cave are mostly sourced from the summer rain, and its minimal response-time to the atmospheric precipitation is less than one day. There are three types of response relationships between the precipitation and the drip rate variations: rapid response type, time-lag response type and stable response type. For rapid response type, the drip discharge is recharged through the flow routes along intensive fractures and interconnectivities; for time-lag response type, the drip discharge is recharged by double-porosity system composed of a high conductivity, low storage capability conduit network and a low-conductivity high-storage capability rock matrix under variable boundary conditions; for stable response type, the drip discharge is mainly recharged by seepage flow and base flow. 2. The observation shows that, inside the Cave, the growth rate of calcite is generally lower in rainy seasons and higher in dry seasons. During the rainy seasons, the drip water is characterized by a lower pH value, higher [Ca2+], [Mg2+], [SO42-] and electrical conductivity (EC) values. According to the calculations of saturation index of calcite (SIc), pCO2 of the drip water, as well as the synthetical analysis of other possible factors, the calcite growth rate is found to be principally influenced by the drip water saturation index of calcite (SIc). And the drip rate and pCO2 in the drip water and in the cave air play the secondly important roles in this process. The recharge mode of heavy rainfall events in the rainy seasons should probably be the main driving force that controls the physicochemical properties and calcite sediment of the drip waters. The abrupt decrease of sedimentary rate and the sharp peak of DOC in drip water in the rainy season probably forms the thin opaque (luminescent under ultraviolet radiation) layers observed in the stalagmites, whereas the relatively higher sedimentary rate in the dry seasons may be responsible for the thicker bright layers. The investigation elucidated here preliminarily reveals the formation mechanism of the stalagmite laminae in Beijing Shihua Cave.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the variations of solar activity, solar EUV and X-ray radiations change over different timescales (e.g., from solar cycle variation to solar flare burst). Since solar EUV and X-ray radiations are the primary energy sources for the ionosphere, theirs variations undoubtedly produce significant and complicated effects on the ionosphere. So the variations of solar activity significantly affect the ionosphere. It is essential for both ionospheric theory and applications to study solar activity effects on the ionosphere. The study about solar activity variations of the ionosphere is an important part of the ionospheric climatology. It can enhance the understanding for the basic processes in the ionosphere, ionospheric structure and its change, ionosphere/thermosphere coupling, and so on. As for applications, people need sufficient knowledges about solar activity variations of the ionosphere in order to improve ionospheric models so that more accurate forecast for the ionospheric environments can be made. Presently, the whole image about the modalities of ionospheric solar activity variations is still unknown, and related mechanisms still cannot be well understood. This paper is about the effects of the 11-year change in solar activity to the low- and mid-latitude ionosphere. We use multi-type ionospheric observations and model to investigate solar activity effects on the electron density and ionospheric spatial structure, and we focus on discussing some related mechanisms. The main works are as follows: Firstly, solar activity variations of ionospheric peak electron density (NmF2) around 1400 LT were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trend of NmF2 with F107 depends on latitudes and seasons. There is obvious saturation trend in low latitudes in all seasons; while in middle latitudes, NmF2 increases linearly with F107 in winter but saturates with F107 at higher solar activity levels in the other seasons. We calculated the photochemical equilibrium electron density to discuss the effects induced by the changes of neutral atmosphere and dynamics processes on the solar activity variations of NmF2. We found that: (1) Seasonal variation of neutral atmosphere plays an important role in the seasonal difference of the solar activity variations of NmF2 in middle latitudes. (2) Less [O]/[N2] and higher neutral temperature are important for the saturation effect in summer, and the increase of vibrational excited N2 is also important for the saturation effect. (3) Dynamics processes can significantly weaken the increase of NmF2 when solar activity enhances, which is also a necessary factor for the saturation effect. Secondly, solar activity variations of nighttime NmF2 were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trends of NmF2 with F107 in nighttime are different from that in daytime in some cases, and the nighttime variation trends depend on seasons. There is linear increase trend in equinox nighttime, and saturation trend in summer nighttime, while the increase rate of NmF2 with F107 increases when solar activity enhances in winter nighttime (we term it with “amplification trend”). We discussed the possible mechanisms which affect the solar activity variations of nighttime NmF2. The primary conclusions are as follows: (1) In the equatorial ionization anomaly (EIA) crest region, the plasma influx induced by the pre-reversal enhancement (PRE) results in the change of the variation trend between NmF2 and F107 from “saturation” to “linear” after sunset in equinoxes and winter; while the recombination process at the F2-peak is the primary factor that affects the variation trend of NmF2 with F107 in middle latitudes. (2) The recombination coefficient at the F2-peak height reaches its maximum at moderate solar activity level in winter nighttime, which induces NmF2 attenuates more quickly at moderate solar activity level. This is the main reason for the amplification trend. (3) The change of the recombination process at the F2-peak with solar activity depends on the increases of neutral parameters (temperature, density et al.) and the F2-peak height (hmF2). The seasonal differences in the changes of neutral atmosphere and hmF2 with solar activity are the primary reasons for the seasonal difference in the variation trend of nighttime NmF2 with F107. Finally, we investigated the solar activity dependence of the topside ionosphere in low latitudes using ROCSAT-1 satellite (at 600 km altitude) observations. The primary results and conclusions are as follows: (1) Latitudinal distribution of the plasma density is local time, seasonal, and solar activity dependent. In daytime, there is a plasma density peak at the dip equator. The peak is obviously enhanced at high solar activity level, and the strength of the peak strongly depends on seasons. While at sunset, two profound plasma density peaks (double-peak structure) are found in solar maximum equinox months. (2) Local time dependence of the latitudinal distribution is due to the local time variation of the equatorial dynamics processes. Double-peak structure is attributed to the fountain effect induced by strong PRE. Daytime peak enhances with solar activity since the plasma density increases with solar activity more strongly at the dip equator due to the equatorial vertical drift, and its seasonal dependence is mainly due to the seasonal variations of neutral density and the equatorial vertical drift. In the sunset sector, seasonal and solar activity dependences of the latitudinal distribution are related to the seasonal and solar activity variations of PRE. (3) The variation trend of the plasma density with solar activity shows local time, seasonal, and latitudinal differences. That is different from the changeless amplification trend at the DMSP altitude (840 km). Profound saturation effect is found in the dip equator region at equinox sunset. This saturation effect in the topside ionosphere is realated to the increase of PRE with solar activity. Solar activity variation trend of the topside plasma density was discussed quantitatively by Chapman-α function. The result shows that the effect induced by the change of the scale height is dominant at high altitudes; while the variation trend of ROCSAT-1 plasma density with solar activity is suggested to be related to the changes of the peak height, the scale height, and the peak electron density with solar activity.