112 resultados para Seasonal consumer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Year-round induction of sporogenesis of Laminaria saccharina was performed by mechanically blocking the transport of the putative sporulation inhibitors produced by the blade meristem and culturing the plants in constant short days. Sporogenesis was successfully induced by removal of the blade meristem, either by cultivating distal blade fragments or by performing a transverse cut in the frond. The earliest sorus formation after artificial induction was 10 days. The age of the sporophytes used for induction was 6-11 months or 2 years in tank-grown or field-collected sporophytes, respectively. Zoospores were successfully released in all cases. Thus, by year-round artificial induction of sporogenesis, (1) sporeling production of L. saccharina and thereafter sporophyte cultivation could be achieved without seasonal limitation, and (2) the life cycle of L. saccharina (from spore to spore) could be completed within 8 months under controlled conditions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae were investigated. In addition, the seasonal variation of inorganic elements in Sargassum kjellmanianum was also studied. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal variations of water exchange in the Luzon Strait are studied numerically using the improved Princeton Ocean Model (POM) with a consideration of the effects of connectivity of South China Sea (SCS) and monsoons. The numerical simulations are carried out with the strategy of variable grids, coarse grids for the Pacific basin and fine grids for the SCS. It. is shown that the Mindoro Strait plays an important role in adjusting the water balance between the Pacific and the SCS. The SCS monsoon in summer seasons hinders the entrance of the Pacific water into the SCS through the Luzon Strait while the SCS monsoon in winter seasons promotes the entrance of Pacific water into the SCS through the Luzon Strait. However, the SCS monsoon does not affect the annual mean Luzon Strait transport, as is mainly determined by the Pacific basin wind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the water level and current data taken in Qiongzhou Strait in the South China Sea (SCS) over the last 37 years (1963 to 1999) was made to examine the characteristics of tidal waves and residual flow through the strait and their roles in the seasonal variation of the SCS circulation. The observations reveal that Qiongzhou Strait is an area where opposing tidal waves interact and a source of water transport to the Gulf of Beibu (Gulf of Tonkin), SCS. A year-round westward mean flow with a maximum speed of 10-40 cm s(-1) is found in Qiongzhou Strait. This accounts for water transport of 0.2-0.4 Sv and 0.1-0.2 Sv into the Gulf of Beibu in winter-spring and summer-autumn, respectively. The outflow from Qiongzhou Strait may cause up to 44% of the gulf water to be refreshed each season, suggesting that it has a significant impact on the seasonal circulation in the Gulf of Beibu. This finding is in contrast to our current understanding that the seasonal circulation patterns in the South China Sea are primarily driven by seasonal winds. Several numerical experiments were conducted to examine the physical mechanisms responsible for the formation of the westward mean flow in Qiongzhou Strait. The model provides a reasonable simulation of semidiurnal and diurnal tidal waves in the strait and the predicted residual flow generally agrees with the observed mean flow. An analysis of the momentum equations indicates that the strong westward flow is driven mainly by tidal rectification over variable bottom topography. Both observations and modeling suggest that the coastal physical processes associated with tidal rectification and buoyancy input must be taken into account when the mass balance of the SCS circulation is investigated, especially for the regional circulation in the Gulf of Beibu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140degreesE and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference. The NECC transport also has a semi-annual fluctuation resulting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughflow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34 degrees N and 35 degrees N, 122 degrees E and 124 degrees E) of the Yellow Sea is mainly occupied by relatively high temperature water (T > 10 degrees C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T < 10 degrees C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34 degrees N and 37 degrees N, 123 degrees E and 126 degrees E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the seasonal and interannual variations in biological productivity in the South China Sea (SCS), a Pacific basin-wide physical - biogeochemical model has been developed and used to estimate the biological productivity and export flux in the SCS. The Pacific circulation model, based on the Regional Ocean Model Systems (ROMS), is forced with daily air-sea fluxes derived from the NCEP (National Centers for Environmental Prediction) reanalysis between 1990 and 2004. The biogeochemical processes are simulated with a carbon, Si(OH)(4), and nitrogen ecosystem (CoSiNE) model consisting of silicate, nitrate, ammonium, two phytoplankton groups (small phytoplankton and large phytoplankton), two zooplankton grazers (small micrograzers and large mesozooplankton), and two detritus pools. The ROMS-CoSiNE model favourably reproduces many of the observed features, such as ChI a, nutrients, and primary production (PP) in the SCS. The modelled depth-integrated PP over the euphotic zone (0-125 m) varies seasonally, with the highest value of 386 mg C m (-2) d (-1) during winter and the lowest value of 156 mg C m (-2) d (-1) during early summer. The annual mean value is 196 mg C m (-2) d (-1). The model-integrated annual mean new production (uptake of nitrate), in carbon units, is 64.4 mg C m (-2) d (-1) which yields an f-ratio of 0.33 for the entire SCS. The modelled export ratio (e-ratio: the ratio of export to PP) is 0.24 for the basin-wide SCS. The year-to-year variation of biological productivity in the SCS is weaker than the seasonal variation. The large phytoplankton group tends to dominate over the smaller phytoplankton group, and likely plays an important role in determining the interannual variability of primary and new production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual variations of egg production rate (EPR) and clutch size of Calanus sinicus, as well as body size of females (prosome length and dry weight), were investigated at a series of stations in the Southern Yellow Sea by onboard incubation. Calanus sinicus was spawning in all the 11 cruises investigated, and the annual variation of EPR was bimodal. Monthly average EPR was highest from May to July, respectively, 5.97, 5.36 and 6.30 eggs female(-1) d(-1), then decreased dramatically to only 1.37 eggs female(-1) d(-1) in August and attained the lowest 1.07 eggs female(-1) d(-1) in October. In November, average EPR increased again to 4.31 eggs female(-1) d(-1). Seasonal variation of clutch size was similar to EPR, except that it decreased gradually after August rather than dramatically as did EPR. Prosome length of females was maximum in May and minimum in October, but dry weight was highest in November. Monthly average EPR correlated better with prosome length than dry weight, while clutch size was rather determined by dry weight of females. It is suggested that egg production of C. sinicus was active during two discontinuous periods when both surface and bottom temperature fell into its favorite range (i.e. 10-23degreesC), and different reproductive strategies were adopted in these two reproductive peaks: other than the highest EPR, longer prosome length was also achieved by C. sinicus from May to July, while females in November developed shorter bodies but accumulated more energy for reproduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoplankton size structure plays a significant role in controlling the carbon flux of marine pelagic ecosystems. The mesoscale distribution and seasonal variation of total and size-fractionated phytoplankton biomass in surface waters. as measured by chlorophyll a (Chl a), was studied in the Southern Yellow Sea using data from four cruises during 2006-2007. The distribution of Chl a showed a high degree of spatial and temporal variation in the study area. Chl a concentrations were relatively high in the summer and autumn, with a mean of 142 and 1.27 mg m(-3), respectively. Conversely, in the winter and spring. the average Chl a levels were only 098 and 0.99 mg m(-3) Total Chl a showed a clear decreasing gradient from coastal areas to the open sea in the summer, autumn and winter cruises. Patches of high Chl a were observed in the central part of the Southern Yellow Sea in the spring due to the onset of the phytoplankton bloom. The eutrophic coastal waters contributed at least 68% of the total phytoplankton biomass in the surface layer. Picophytoplankton showed a consistent and absolute dominance in the central region of the Southern Yellow Sea (>40%) in all of the cruises, while the proportion of microphytoplankton was the highest in coastal waters The relative proportions of pico- and nanophytoplankton decreased with total biomass, whereas the proportion of the micro-fraction increased with total biomass. Relationships between phytoplankton biomass and environmental factors were also analysed. The results showed that the onset of the spring bloom was highly dependent on water column stability. Phytoplankton growth was limited by nutrient availability in the summer due to the strong thermocline. The combined effects of P-limitation and vertical mixing in the autumn restrained the further increase of phytoplankton biomass in the Surface layer. The low phytoplankton biomass in winter was caused by vertical dispersion due to intense mixing. Compared with the availability of nutrients. temperature did not seem to cause direct effects on phytoplankton biomass and its size structure. Although interactions of many different environmental factors affected phytoplankton distributions. hydrodynamic conditions seemed to be the dominant factor. Phytoplankton size structure was determined mainly by the size-differential capacity in acquiring resource. Short time scale events, such as the spring bloom and the extension of Yangtze River plume, can have substantial influences, both on the total Chl a concentration and on the size structure of the phytoplankton. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based oil the measurements of particulate phosphorus (PP) in the Jiaozhou Bay front May 2003 to April 2004, the spatial distribution, seasonal variation and biogeochemical characteristics of PP Were investigated to Understand the fates and roles of phosphorus in the Jiaozhou Bay ecosystem. The Concentration of the total PP ranged from 0. 07 to 2. 09 mu mol/dm(3). The concentration of POP was from 0. 01 to 1. 83 mu mol/dm(3), with all average of with all average of 0. 33 mu mol/dm(3), which accounted for 50. 4% in total PP. In general, file concentrations of IT in surface water show obvious seasonal variations in the Jiaozhou Bay. POP was the highest in spring, which derived front the accumulation of phyto-detritus and was the lowest ill autumn, which was decomposed into seawaters to participate the recycle of phosphorus. PIP was the highest in spring and summer and Was the lowest in autumn and winter. PLP Was Mainly influenced by river input in the inner bay lint POP derived front autochthonous source in the outer bay. Overkill, the concentrations of IT in the inner bay were higher than those in mouth and the Older bay. In the inner bay. the concentrations of IT with the area near the shore were higher than those in the center of the bay. Totally PP showed the decreasing trend with depth especially in spring and winter. The high value of PP emerged in 20 and 10 in Corresponding to summer and autumn, respectively. The changes of POP showed hysteretic effect compared with the changes of Chl a in the investigated year. However, according to the Change of Chl a, the second high value of POP which should be emerged ill October was missing due to the remineralization of POP and participation in the recycle of phosphorus, which lead to the high concentration of orthophosphate in seawaters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of dissolved organic nitrogen (DON) and nitrate were determined seasonally (winter, spring and summer) during three years along line P, i.e. an E-W transect from the coast of British Columbia, Canada, to Station P (50degreesN, 145degreesW) in the subarctic North East Pacific Ocean. In conjunction, DON measurements were made in the Straits of Juan de Fuca and Georgia within an estuarine system connected to the NE Pacific Ocean. The distribution of DON at the surface showed higher values of 4-17 muM in the Straits relative to values of 4-10 muM encountered along line P, respectively. Along line P, the concentration of DON showed an inshore-offshore gradient at the surface with higher values near the coast. The equation for the conservation of DON showed that horizontal transport of DON (inshore-offshore) was much larger than vertical physical mixing. Horizontal advection of DON-rich waters from the coastal estuarine system to the NE Pacific Ocean was likely the cause of the inshore-offshore gradient in the concentration of DON. Although the concentration of DON was very variable in space and time, it increased from winter to summer, with an average build up of 4.3 muM in the Straits and 0.7 muM in the NE subarctic Pacific. This implied seasonal DON sources of 0.3 mmol N m(-2) d(-1) at Station P and 1.5 mmol N m(-2) d(-1) in the Straits, respectively. These seasonal DON accumulation rates corresponded to about 15-20% of the seasonal nitrate uptake and suggested that there was a small seasonal build up of labile DON at the surface. However, the long residence times of 180-1560 d indicated that the most of the DON pool in surface waters was refractory in two very different productivity regimes of the NE Pacific. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grazing of dominant zooplankton copepods (Calanoides acutus. and Metridia gerlachei), salps (Salpa thompsoni) and microzooplankton was determined during the austral summer of 1998/1999 at the seasonal ice zone of the Prydz Bay region. The objective was to measure the ingestion rates of zooplankton at the seasonal ice zone, so as to evaluate the importance of different groups of zooplankton in their grazing impact on phytoplankton standing stock and primary production. Grazing by copepods was low, and accounted for less than or equal to 1% of phytoplankton standing stocks and 3.8-12.5% of primary production for both species during this study, even the ingestion rates of individuals were at a high level compared with previous reports. S. thompsoni exhibited a relatively high grazing impact on primary production (72%) in the north of our investigation area. The highest grazing impact on phytoplankton was exerted by microzooplankton during this investigation, and accounted for 10-65% of the standing stock of phytoplankton and 34-100% of potential daily primary production. We concluded that microzooplankton was the dominant phytoplankton consumer in this study area. Salps also played an important role in control of phytoplankton where swarming occurred. The grazing of copepods had a relatively small effect on phytoplankton biomass development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment is commonly considered as a source of phosphine, which is a highly toxic and reactive atmospheric trace gas. This study aims to investigate the seasonal and spatial distribution of matrix-bound phosphine (MBP) and its relationship with the environment in the Changjiang River Estuary. A total of 43 surface sediments were collected in four seasons of 2006, and concentrations of MBP and relative environmental factors were analyzed. MBP ranged from 1.93 to 94.86 ng kg(-1) dry weight (dw) with an average concentration of 17.14 ng kg(-1) dw. The concentrations of MBP in the tipper estuary were, higher than those in the lower estuary, which could be attributed to greater pollutant inputs in the upper estuary. The concentrations of MBP also varied with season, with November > August > May > February. Significant correlations existed between MBP and total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (W), organic carbon (OC), total nitrogen (TN), the grain size, and redox potential (Eh), suggesting that these sedimentary environmental characteristics played an important role in controlling the MBP levels in the sediments. Notably, there were positive linear relationships between the concentrations of soluble reactive phosphorus (SRP), TP, and chlorophyll a (Chl a) in bottom water and MBP in sediments. These relationships might be very complicated and need further exploration. This work is the first comprehensive study of the seasonal and spatial distribution of MBP in sediments and its relationships with environmental factors in a typical estuary, and will lead to deeper understanding of the phosphorus (P) biogeochemical cycle. (C) 2008 Elsevier Ltd. All rights reserved.