120 resultados para Scanning tunneling microscopy (STM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report the findings of a study on scanning electrochemical microscopy (SECM) to investigate the interfacial electron-transfer (ET) reaction between the 7,7,8,8-tetracyanoquinodimethane radical anion (TCNQ(.-)) in 1,2-dichloroethane and ferricyanide in an ice-like matrix (a mixture of insulting ice and conductive liquid) under low temperatures. Experimental results indicate that the formed liquid/ice-like matrix interface is superficially similar in electrochemical characteristics to a liquid/liquid interface at temperatures above -20 degreesC. Furthermore, imaging data show that the surface of the ice-like matrix is microscopically flat and physically stable and can be applied as either a conductive or an insulting substrate for SECM studies. Perchlorate ion was selected as the common ion in both phases, the concentrations of which controlled the interfacial potential difference. The effect of perchlorate concentration in the DCE phase on interfacial reactions has been studied in detail. The apparent heterogeneous rate constants for TCNQ(.-) oxidation by Fe(CN)(6)(3-) in another phase under different temperatures have been calculated by a best-fit analysis, where the experimental approach curves are compared with the theoretically derived relationships. Reaction rate data obey Butler-Volmer formulation before and after the freezing point, which is similar to most other known cases of ET reactions at liquid/liquid interfaces. However, there is a sharp change observed for heterogeneous rate constants around the freezing point of the aqueous phase, which reflects the phase transition. At temperatures below -20 degreesC, surface-confined voltammograms for the reduction of ferricyanide were obtained, and the ice-like matrix became an insulating one, which indicates that the aqueous phase is really a frozen phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning probe microscopy was used to simultaneously determine the molecular chain structure and intrinsic mechanical properties, including anisotropic elastic modulus and friction, for lamellae of highly oriented high-density polyethylene (HDPE) obtained by the melt-drawn method. The molecular-scale image of the highly oriented lamellae by friction force microscopy (FFM) clearly shows that the molecular chains are aligned parallel to the drawing direction, and the periodicities along and perpendicular to the drawing direction are 0.26 and 0.50 nm, respectively. The results indicate that the exposed planes of the lamellae resulting from the melt-drawn method are (200), which is consistent with results of transmission electron microscopy and electron diffraction. Because of the high degree of anisotropy in the sample, coming from alignment of the molecular chains along the drawing direction, the measured friction force, F, determined by FFM is strongly dependent on the angle, theta, between the scanning direction and the chain axis. The force increases as theta is increased from 0 degrees (i.e., parallel to the chain axis) to 90 degrees (i.e., perpendicular to the chain axis). The structural anisotropy was also found to strongly influence the measurements of the transverse chain modulus of the polymer by the nanoindentation technique. The measured value of 13.8 GPa with transverse modulus was larger than the value 4.3 GPa determined by wide-angle X-ray diffraction, which we attributed to anisotropic deformation of the lamellae during nanoindentation measurements that was not accounted for by the elastic treatment we adopted from Oliver and Pharr. The present approach using scanning probe microscopy has the advantage that direct correlations between the nanostructure, nanotribology, and nanomechanical properties of oriented samples can be determined simultaneously and simply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we studied the reactions of both potassium ferricyanide and hexaammineruthenium(III) chloride at a 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode (GCE) by scanning electrochemical microscopy (SECM) in different pH solutions. The surface of the modified electrode has carboxyl groups, the dissociation of which are strongly dependent upon the solution pH values. The rate constant kb of the oxidation of ferrocyanide on the modified electrode can be obtained by fitting the experimental tip current-distance (I-T-d) curves with the theoretical values. The surface pK(a) of the 4-ABA modified GCE was estimated from the plot of standard rate constant k(o) versus the solution pH and is equal to 3.2, which is in good agreement with the reported result. The SECM approach curves for Ru(NH3)(6)(3+) both on the bare and the modified electrodes show similar diffusion control processes. These results can be explained by the electrostatic interactions between the modified electrode surface and the model compounds with different charges. (C) 2001 Elsevier Science BN. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled monolayer of natural single-stranded DNA (ssDNA) from dl:natured plasmid DNA and pBR322/PstI marker was first observed on Au(111) by low-current STM (Lc-STM). The width of ssDNA stripe measured is 0.9 +/- 0.1 nm, which is just half of the theoretical width of double-stranded DNA (dsDNA). Each ssDNA stripe consists of bright and dark parts. alternatively; the period of two adjacent bright parts in the same ssDNA stripe measured is 0.4 +/- 0.1 nm, which is consistent with the theoretical distance between two adjacent base pairs in ssDNA. The stripe orientations in ssDNA domains are predominately at angles of 0 degrees, 60 degrees or 120 degrees relative to crystallographically faceted steps on the gold surface. The electrochemical experiment indicated that it was ssDNA but not dsDNA that was absorbed on Au(111)surface. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoindentation technique and scanning force microscopy have been used to measure directly the polyethylene modulus along the chain axis. Single crystals of polyethylene were employed in order to obtain well-aligned chain segments. To minimize effects of scanner creep, a Z scan rate of 3 Hz was employed. The "X Rotate" value of 25 degrees was selected to eliminate effects of lateral tip motion. The results were analyzed by the Oliver -Pharr method for which direct observation and measurement of the contact area are not required. Considering the influence of tip roundness on the projected contact area, the nanoindentation results were analyzed by the Sawa method. The chain modulus obtained from the thinner polyethylene single crystal sample was 204 +/- 21 GPa by the Oliver-Pharr method and 168 +/- 17 GPa by the Sawa method. The lower values than expected were due to substrate effects and anisotropy of chain deformation during nanoindentation. An extrapolation of the chain modulus obtained by various strains to zero nanoindentation eliminated the effect of substrate and anisotropy of chain deformation. The corresponding chain modulus obtained from the thicker sample was 278 GPa by the Oliver-Pharr method and 267 GPa by the Sawa method, respectively, in better agreement with the value of 340 Cpa determined theoretically. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report the reverse electron transfer reaction between TCNQ in 1, 2-dichloroethane (DCE) and ferrocyanide in water. This process is a thermodynamic unfavorable reaction and the reverse electron transfer reaction can only be obtained by scanning electrochemical microscopy(SECM) in the presence of suitable potential-determining ions, which govern the interfacial potential difference. In our case, the potential determining ions are tetrabutylammonium ion(TBA(+)) and tetraphenylarsonium ion (TPAs+). The effects of the concentrations of TBA(+) and TPAs+ in two phases and other parameters have been studied in detail. The apparent heterogeneous rate constants(k(i)) were obtained under different values of K-p(K-p=c(i)(w)/c(i)(o)) for both cases by fitting the SECM approach curves with theoretical ones and the results showed that they were controlled by the interfacial potential differences. The relationship between apparent heterogeneous rate constants and the interfacial potential differences obeys Butler-Volmer theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic principle, instrumentation and recent advances of scanning electrochemical microscopy are briefly reviewed with 55 references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an organic-inorganic composite film of heteropolyanion was Formed by attaching a Keggin-type heteropolyanion, SiW12O404-, on carbon electrode surface derivatized by 4-aminophenyl monolayer. The composite film thus grafted on carbon electrode surface has good stability because of the ionic bonding character between SiW12O404- and surface aminophenyl groups. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used to characterize the composite film. Compared with SiW12O404- electrodeposited on a bare glassy carbon electrode (GCE), the composite film gives three more sharp and well-defined redox couples attributed to two one- and two-electron processes, and the analyses of the voltammograms of SiW12O404- anion in the composite film modified on GCE shows that its surface coverage is close to a closest packing monolayer. STM characterization shows that a two-dimensional order heteropolyanion monolayer was formed on HOPG substrate. The composite film provides a favorable environment for electron and proton transfer between SiW12O404- ion and electrode surface, which may make it suitable for various applications in sensors and microelectronics devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-stoichiometric mixed-valent molybdenum(VI, V) oxide film was grown on carbon substrates by the electrodeposition method. Responses of the prepared molybdenum oxide thin films to potential and to different solution acidities were studied by cyclic voltammetry, and the corresponding morphological changes of the film were monitored by atomic force microscopy (AFM). AFM images of the molybdenum oxide film show that the characteristic domed structure on the film surface increased during the transition from the oxidized state to the reduced state without signification change in the KMS surface roughness value. Furthermore, AFM studies show that the solution acidity has great effect on the morphology of the films, and the films undergo a homogenizing process with increasing pH of the solutions. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ electrochemical scanning tunneling microscopy, alternating current voltammetry, and electrochemical quartz crystal microbalance have been employed to follow the potential-dependent adsorption/desorption processes of nucleic acid bases on highly oriented pyrolytic graphite (HOPG) electrode. The results show that (i) potential-dependent adsorption/desorption of nucleic acid bases on HOPG electrode was accompanied by delamination of the HOPG surface, and the delamination initiates from steps or kinks on the electrode surface, which provide highly active sites for adsorption; (ii) the delamination usually occurred when the electrode potential was changed or when the electrode was at potentials where the phase transition of adsorbate occurred. These results suggest that the surface stress resulting from the interaction between the substrate and adsorbate, as well as the interaction due to potential-induced surface charge distribution and the hysteresis of charge equilibrium are the main factors resulting in HOPG delamination. (C) 1999 The Electrochemical Society. S0013-4651(97)12-013-4. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

当利用扫描隧道显微镜(SPM)作为一种纳米操作工具时,由于其缺乏实时的传感器信息反馈,而大大阻碍了它的广泛应用.利用超媒体人机交互接口可以解决这个问题.在纳米操作过程中,超媒体接口不但可以为操作者提供可实时更新的仿真操作场景,还可以通过力反馈手柄让操作者实时地感受到探针受到的三维纳米操作力.除此之外,操作者还可以通过该手柄直接控制探针的三维运动.最后在聚碳酸酯上进行了超媒体人机接口的纳米刻画实验.实验结果验证了该系统的有效性和效率.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organised multilayers were formed from the controlled self-assembly of ferrocene alkyl thiols on Au(111) surfaces. The control was accomplished by increasing the concentration of the thiol solutions used for the assembly. Cyclic voltammetry, ellipsometry, scanning probe microscopy (STM and AFM) and in situ FTIR spectroscopy were used to probe the differences between mono- and multilayers of the same compounds. Electrochemical desorption studies confirmed that the multilayer structure is attached to the surface via one monolayer. The electrochemical behaviour of the multilayers indicated the presence of more than one controlling factor during the oxidation step, whereas the reduction was kinetically controlled which contrasts with the behaviour of monolayers, which exhibit kinetic control for the oxidation and reduction steps. Conventional and imaging ellipsometry confirmed that multilayers with well-defined increments in thickness could be produced. However, STM indicated that at the monolayer stage, the thiols used promote the mobility of Au atoms on the surface. It is very likely that the multilayer structure is held together through hydrogen bonding. To the best of out knowledge, this is the first example of a controlled one-step growth of multilayers of ferrocenyl alkyl thiols using self-assembly techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations are performed to study the interaction of His-tagged peptide with three different metal surfaces in explicit water. The equilibrium properties are analyzed by using pair correlation functions (PCF) to give an insight into the behavior of the peptide adsorption to metal surfaces in water solvent. The intermolecular interactions between peptide residues and the metal surfaces are evaluated. By pulling the peptide away from the peptide in the presence of solvent water, peeling forces are obtained and reveal the binding strength of peptide adsorption on nickel, copper and gold. From the analysis of the dynamics properties of the peptide interaction with the metal surfaces, it is shown that the affinity of peptide to Ni surface is the strongest, while on Cu and An the affinity is a little weaker. In MD simulations including metals, the His-tagged region interacts with the substrate to an extent greater than the other regions. The work presented here reveals various interactions between His-tagged peptide and Ni/Cu/Au surfaces. The interesting affinities and dynamical properties of the peptide are also derived. The results give predictions for the structure of His-tagged peptide adsorbing on three different metal surfaces and show the different affinities between them, which assist the understanding of how peptides behave on metal surfaces and of how designers select amino sequences in molecule devices design. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the magnetic and magneto-optical properties of amorphous rare earth-transition metal (RE-TM) alloys as well as the magnetic coupling in the multi-layer thin films for high density optical data storage are presented. Using magnetic effect in scanning tunneling microscopy the clusters structure of amorphous RE-TM thin films has been observed and the perpendicular magnetic anisotropy in amorphous RE-TM thin films has been interpreted. Experimental results of quick phase transformation under short pulse laser irradiation of amorphous semiconductor and metallic alloy thin films for phase change optical recording are reported. A step-by-step phase transformation process through metastable states has been observed. The waveform of crystallization propagation in micro-size spot during laser recording in amorphous semiconductor thin films is characterized and quick recording and erasing mechanism for optical data storage with high performance are discussed. The nonlinear optical effects in amorphous alloy thin films have been studied. By photo-thermal effect or third order optical nonlinearity, the optical self-focusing is observed in amorphous mask thin films. The application of amorphous thin films with super-resolution near field structure for high-density optical data storage is performed. (c) 2007 Elsevier B.V. All rights reserved.