88 resultados para SODIUM CARBONATES
Resumo:
The C-phycocyanin and the R-phycoerythrin were purified from the blue-green alga Spirulina platensis and red alga Polysiphonia urceolata respectively. Both sodium periodate and glutaraldehyde are effective coupling agents being capable of constructing the R-phycoerythrin-C-phycocyanin conjugate, which was also called phycobiliproteins energy transfer model. The two artificial conjugates constructed with different methods were purified by Sephadex G-200 chromatography respectively. Spectra analysis indicated that energy transfer occurred in the two conjugates. The conjugate with sodium periodate had the higher efficiency of energy transfer than that with glutaraldehyde conjugate.
Resumo:
Authigenic carbonates were sampled in methane-enriched piston core sediments collected from gas venting sites on the western continental slope of the Ulleung Basin, East Sea of Korea. Multidisciplinary investigations on these carbonates, including the scanning electronic microscope (SEM) observations and mineralogical-geochemical compositions, were carried out to identify the carbon and oxygen sources and the forming mechanism of these carbonates. The authigenic carbonates from the study area correspond to semi-consolidated, compact concretions or nodules ranging from 2 to 9 cm in size. X-ray diffraction and electron microprobe analyses showed that most of the sampled carbonate concretions were composed of almost purely authigenic high-Mg calcite (10.7-14.3 mol% MgCO3). Characteristically, microbial structures such as filaments and rods, which were probably associated with the authigenic minerals, were abundantly observed within the carbonate matrix. The carbonates were strongly depleted in delta C-13 (-33.85 parts per thousand to -39.53 parts per thousand Peedee Belemnite (PDB)) and were enriched in delta O-18 (5.16-5.60 parts per thousand PDB), indicating that the primary source of carbon is mainly derived from the anaerobic oxidation of methane. Such methane probably originated from the destabilization of the underlying gas hydrates as strongly supporting from the enriched O-18 levels. Furthermore, the strongly depleted delta C-13 values (-60.7 parts per thousand to -61.6 parts per thousand PDB) of the sediment void gases demonstrate that the majority of the gas venting at the Ulleung Basin is microbial methane by CO2 reduction. This study provides another example for the formation mechanism of methane-derived authigenic carbonates associated with gas-hydrate decomposition in gas-seeping pockmark environments. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The partitioning of Y and Ho between CaCO3 (calcite and aragonite respectively) and seawater was experimentally investigated at 25 degrees C and I atm. Both Y and Ho were observed to be strongly partitioned into the overgrowths of calcite or aragonite. Their partition coefficients, D-Y and D-Ho, were determined to be similar to 520-1400 and similar to 700-1900 in calcite, similar to 1200-2400 and similar to 2400-4300 in aragonite, respectively. Y fractionates from Ho during the coprecipitation with either calcite or aragonite. Within our experimental conditions, the fractionation factor, k = D-Y/D-Ho, was determined to be similar to 0.62-0.77 in calcite and similar to 0.50-0.57 in aragonite, respectively. The aqueous complexation of Y and Ho, which is a function of solution chemistry, probably plays an important role in both the partitioning and the fractionation. Further analyses suggest that the difference in covalency between Y and Ho associated with changes in their coordination environments is the determinant factor to the Y-Ho fractionation in the H2CO3-CaCO3 System.
Resumo:
Fish Lateolabrax japonicus were exposed to anion surfactant sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS) at 1 mg/l, respectively, for 6, 12 and 18 d, with one control group. Liver antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) and glutathione S-transferase (GST) were determined; brain acetylcholinesterase (AChE) and liver inducible nitric oxide synthase (NOS) activities were also measured. The results of the study indicated that these parameters made different, sometimes, adverse responses to SDBS and SDS exposure, such as the activity of NOS can be inhibited by SDBS and induced by SDS, the different physico-chemical characteristics of SDBS and SDS should be responsible for their effects on enzyme activities. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of in vivo exposure of Mytilus galloprovincialis to two anionic surfactants (SDBS and SDS) on the molecular biomarker system were studied. After continuous exposure for 72 days, activities/levels of GST, GPx and GSH were significantly higher than in corresponding control groups following exposure to 3.000 mg/L SDS and SDBS. Activities of SOD and CAT were significantly inhibited by experimental SDBS (except CAT in 0.100 mg/L group), but not by SDS. Statistical analysis of enzyme activities/levels suggested that there were significant positive relationships between GST and GPx, and negative relationships were found between GSH and CAT, GSH and SOD. Amplified fragment length polymorphism (AFLP) results showed that a greater genotoxic effect was observed for SDBS than for SDS. Based on the above results, the biomarker system of mussels can be affected by the two anionic surfactants (>= 3.000 mg/L); it was more easily affected by SDBS than by SDS. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
Resumo:
Fish Lateolabrax japonicus were exposed to 0.1 and 1 mg/L of anion surfactant sodium dodecylbenzene sulfonate (SDBS) and to 2 and 20 mu g/L of benzo[a]pyrene (B[a]P) for 6, 12, and 18 days, with control and solvent control groups. Liver antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and glutathione S-transferase (GST), were determined; brain acetyleholinesterase (AChE) and liver inducible nitric oxide synthase (iNOS) activities were also measured. The results indicated that (1) L. japonicus avoided oxidative damage through antioxidant systems; (2) SOD, GPx, and GSH were induced, and GST was inhibited and then induced by B[a]P exposure; and (3) CAT, GPx, and AChE were induced while NOS was inhibited, and GST was induced and then inhibited by SDBS stress in experimental period. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The title coordination polymer, {[Ni3Na(OH)(C9H3O6)(2)( H2O)(11)] center dot 1.5H(2)O}(n), is built up from three independent Ni-II ions and one Na-I cation bridged by benzene-2,4,6-tricarboxylate ( BTC) ligands and water molecules. Three Ni-II ions are bridged by three bidentate carboxylate groups of three BTC ligands, two aqua ligands and one OH- unit, to form a trinuclear metal cluster. The Na-I cation is bonded to the Ni-II cluster by two bridging water molecules. One of the three BTC ligands bridges neighbouring clusters into one-dimensional chains, which are further connected through a complex hydrogen-bonding scheme, forming a three-dimensional suprastructure. The title complex is isomorphous with the previously reported Co-II complex.