138 resultados para Runge Lenz Three Body Hydrogen Molecular Ion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pre-column derivatization method for the sensitive determination of aliphatic amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by HPLC with fluorescence detection and APCI/NIS identification in positive-ion mode has been developed. The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by the 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent, BCEOC, that could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M + H](+) with APCI/MS in positive-ion mode. The collision induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 264.1, m/z 246.0 and m/z 218.1, corresponding to the cleavages of CH2CH2O-CO, CH2CH2-OCO, and N-CH2CH2O bonds. Studies on derivatization conditions demonstrated that excellent derivatization yields close to 100% were observed with a 3 to 4-fold molar reagent excess in acetonitrile solvent, in the presence of borate buffer (pH 9.0) at 40 degrees C for 10 min. In addition, the detection responses for BCEOC derivatives were compared with those obtained with CEOC and FMOC as labeling reagents. The ratios I-BCEOC/I-CEOC and I-BCEOC/I-FMOC were, respectively, 1.40-2.76 and 1.36-2.92 for fluorescence responses (here, I was the relative fluorescence intensity). Separation of the amine derivatives had been optimized on an Eclipse XDB-C-8 column. Detection limits calculated from an 0.10 pmol injection, at a signal-to-noise ratio of 3, were 18.65-38.82 fmol (injection volume 10 mu L for fluorescence detection. The relative standard deviations for intraday determination (n = 6) of standard amine derivatives (50 pmol) were 0.0063-0.037% for retention times and 3.36-6.93% for peak areas. The mean intra-and inter-assay precision for all amines were <5.4% and 5.8%, respectively. The recoveries of amines ranged from 96 to 113%. Excellent linear responses were observed with correlation coefficients of >0.9994. The established method provided a simple and highly sensitive technique for the quantitative analysis of trace amounts of aliphatic amines from biological and natural environmental samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive method for the determination of 30 kinds of free fatty acids (FFAs, C-1-C-30) with 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4,5-f] 9,10-phenan- threne (TSPP) as labeling reagent and using high performance liquid chromatography with fluorescence detection and identification by online postcolumn mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion mode (HPLC/MS/APCI) has been developed. TSPP could easily and quickly label FFAs in the presence of K2CO3 catalyst at 90 degrees C for 30 min in N,N-dimethylformamide (DMF) solvent, and maximal labeling yields close to 100% were observed with a 5-fold excess of molar reagent. Derivatives were stable enough to be efficiently analyzed by high performance liquid chromatography. TSPP was introduced into fatty acid molecules and effectively augmented MS ionization of fatty acid derivatives and led to regular MS and MS/MS information. The collision induced cleavage of protonated molecular ions formed specific fragment ions at m/z [MH](+)(molecular ion), m/z [M'+CH2CH2](+)(M' was molecular mass of the corresponding FFA) and m/z 295.0 (the, mass of protonated molecular core structure of TSPP). Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C-8 column (4.6 x 150 mm, 5 mu m, Agilent) with a good baseline resolution in combination with a gradient elution. Linear ranges of 30 FFAs are 2.441 x 10(-3) to 20 mu mol/L, detection limits are 3.24 similar to 36.97 fmol (injection volume 10 mu L, at a signal-to-noise ratio of 3, S/N 3:1). The mean interday precision ranged from 93.4 to 106.2% with the largest mean coefficients of variation (R.S.D.) < 7,5%. The mean intraday precision for all standards was < 6.4% of the expected concentration. Excellent linear responses were observed with correlation coefficients of > 0.9991. Good compositional data could be obtained from the analysis of extracted fatty acids from as little as 200 mg of bryophyte plant samples.Therefore, the facile TSPP derivatization coupled with HPLC/MS/APCI analysis allowed the development of a highly sensitive method for the quantitation of trace levels of short and long chain fatty acids from biological and natural environmental samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive method for the determination of free fatty acids using 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-dimidazol-1-yl) ethyl-p-toluenesuIfonate (ANITS) as tagging reagent with fluorescence detection has been developed. ANITS could easily and quickly label fatty acids in the presence of the K2CO3 catalyst at 90 degrees C for 40 min in N,N-dimethylformamide solvent. From the extracts of rape bee pollen samples, 20 free fatty acids were sensitively determined. Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C8 column by HPLC in conjunction with gradient elution. The corresponding derivatives were identified by post-column APCI/MS in positive-ion detection mode. ANITS-fatty acid derivatives gave an intense molecular ion peak at mlz [M+H](+); with MS/MS analysis, the collision-induced dissociation spectra of m/z [M+H](+) produced the specific fragment ions at mlz [M-345](+) and mlz 345.0 (here, m/z 345 is the core structural moiety of the ANITS molecule). The fluorescence excitation and emission wavelengths of the derivatives were lambda(ex) = 250 nm and lambda(em) = 512 nm, respectively. Linear correlation coefficients for all fatty acid derivatives are > 0.9999. Detection limits, at a signal-to-noise ratio of 3 : 1, are 24.76-98.79 fmol for the labeled fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive and accurate method based on the precolumn derivatization of bile acids (BA) with a high ionization efficiency labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-benzenesulfonate (BDEBS) coupled with LC/MS has been developed. After derivatization, BA molecules introduced a weak basic nitrogen atom into the molecular core structure that was readily ionized in commonly used acidic HPLC mobile phases. Derivatives were sufficiently stable to be efficiently analyzed by atmospheric pressure chemical ionization (APCI)-MS/MS in positive-ion mode. The MS/MS spectra of BA derivatives showed an intense protonated molecular ion at m/z [M + H](+). The collision-induced dissociation of the molecular ion produced fragment ions at [MH - H2O](+), [MH - 2H(2)O](+), [MH - 3H(2)O](+). The characteristic fragment ions were at m/z 320.8, 262.8, and 243.7 corresponding to a cleavage of N - CO, O - CO, and C - OCC, respectively, and bonds of derivatized molecules. The selected reaction monitoring, based on the m/z [M + H]+ -> [MH - H2O](+), [MH - H2O](+), [MH - 2H(2)O](+), [MH-3H(2)O](+), 320.8, 262.8, and 243.7 transitions, was highly specific for the BA derivatives. The LODs for APCI in a positive-ion mode, at an S/N of 5, were 44.36-153.6 fmol. The validation results showed high accuracy in the range of 93-107% and the mean interday precision for all standards was < 15% at broad linear dynamic ranges (0.0244-25nmol/mL). Good linear responses were observed with coefficients of > 0.9935 in APCI/MS detection. Therefore, the facile BDEBS derivatization coupled with mass spectrometric analysis allowed the development of a highly sensitive and specific method for the quantitation of trace levels of the free and glycine-conjugated BA from human serum samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pre-column derivatization method for the sensitive determination of amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl chloroformate (BCIC-Cl) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives is carried out by high performance liquid chromatography/atmospheric pressure chemical ionization (LC-APCl-MS-MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent is replaced by 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl functional group, which results in a sensitive fluorescence derivatizing reagent BCIC-Cl. BCIC-Cl can easily and quickly label amines. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography and show an intense protonated molecular ion corresponding m/z [MH](+) under APCl in positive-ion mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 260 corresponding to the cleavage of CH2-OCO bond. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3 to 4-fold molar reagent excess. In addition, the detection responses for BCIC derivatives are compared with those obtained using CEOC and FMOC as derivatization reagents. The ratios of l(BCIC)/l(CEOC) and l(BCIC)/l(FMOC) are, respectively, 1.23-3.14 and 1.25-3.08 for fluorescent (FL) responses (here, l is relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits are calculated from 1.0 pmol injection, at a signal-to-noise ratio of 3, are 10.6-37.8 fmol. The mean interday accuracy ranges from 94 to 105% for fluorescence detection with the largest mean %CV < 7.5. The mean interday precision for all standards is < 6.0% of the expected concentration. Excellent linear responses are observed with coefficients of > 0.9997.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC-HCI) as the dehydrant with fluorescence detection has been developed. Amines were derivatized to their acidamides with labeling reagent 2-(2-phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA). Studies on derivatization conditions indicated that the coupling reaction proceeded rapidly and smoothly in the presence of a base catalyst in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum at lambda(ex) 260nm and an emission maximum at lambda(em) 380nm. The labeled derivatives exhibited high stability and were enough to be efficiently analyzed by high-performance liquid chromatography. Identification of derivatives was carried out by online post-column mass spectrometry (LC/APCI-MS/MS) and showed an intense protonated molecular ion corresponding m/z [MH](+) under APCI in positive-ion mode. At the same time, the fluorescence properties of derivatives in various solvents or at different temperature were investigated. The method, in conjunction with a gradient elution, offered a baseline resolution of the common amine derivatives on a reversed-phase Eclipse XDB-C-8 column. LC separation for the derivatized amines showed good reproducibility with acetonitrile-water as mobile phase. Detection limits calculated from 0.78 pmol injection, at a signal-to-noise ratio of 3, were 3.1-18.2 fmol. The mean intra- and inter-assay precision for all amine levels were < 3.85% and 2.11%, respectively. Excellent linear responses were observed with coefficients of > 0.9996. The established method for the determination of aliphatic amines from real wastewater and biological samples was satisfactory. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ionosphere is the ionized component of the Earth's upper atmosphere. Solar EUV radiation is the source of ionospheric ionization. Thus the ionosphere is affected strongly by the variations in solar radiation. Solar flares and solar eclipses can induce remarkable short time changes in solar radiation: the solar radiation would increase suddenly during solar flares and decrease significantly during solar eclipses. Solar flare and eclipse events not only affect directly the photochemical processes, but also affect the dynamic processes, and even affect the neutral atmosphere, which is strongly coupled with the ionosphere. The study on the ionospheric response to solar flares and eclipses can advance our knowledge on the ionosphere and its photochemical and dynamic processes and help us to evaluate the ionospheric parameters (such as ion loss coefficients). In addition, the study on the ionospheric responses to solar flares and eclipses is an important part of the ionospheric space weather, which can provide guides for space weather monitoring. This thesis devotes to the study on the ionospheric responses to solar flares and solar eclipses. I have developed two models to simulate the variations of solar EUV radiation during solar flares and solar eclipses, and involved in developing a 2D mid- and low-latitude ionospheric model. On the basis of some observed data and the ionospheric model, I study the temporal and spatial variations of the ionosphere during solar flares and eclipses, and investigate the influences of solar activity, solar zenith angle, neutral gas density, and magnetic dip angle on the ionospheric responses to solar flares and solar eclipses. The main points of my works and results are summarized as follows. 1. The ionospheric response to the X17.2 solar flare on October 28, 2003 was modeled via using a one-dimension theoretical ionospheric model. The simulated variation of TEC is in accordance with the observations, though there are some differences in the amplitude of the variation. Then I carried out a series of simulations to explore the local time and seasonal dependences of the ionospheric responses to solar flares. These calculations show that the ionospheric responses are largely related with the solar zenith angle (SZA). During the daytime (small SZA), most of the increases in electron density occur at altitudes below 300 km with a peak at around 115 km; whereas around sunrise and sunset (SZA>90°), the strongest ionospheric responses occur at much higher altitudes. The TEC increases slower at sunrise than at sunset, which is caused by the difference in the evolution of SZA at sunrise and sunset: SZA decreases with time at sunrise and increase with time at sunset. The ionospheric response is largest in summer and smallest in winter, which is also related to the seasonal difference of SZA. 2. Based on the observations from the ionosondes in Europe and the ionospheric model, I investigated the differences of the ionosphere responses to solar eclipses between the E-layer and F1-layer. Both the observation and simulation show that the decrease in foF1 due to the solar eclipses is larger than that in foE. This effect is due to that the F1 region locates at the transition height between the atomic ion layer and the molecular ion layer. With the revised model of solar radiation during solar flares, our model calculates the radiations from both the inside and outside of photosphere. Large discrepancy can be found between the observations and the calculations with an unrevised model, while the calculations with the revised model consist with the observations. 3. I also explore the effects of the F2-layer height, local time, solar cycle, and magnetic dip angle on the ionospheric responses to solar eclipses via using an ionospheric model and study on the solar zenith angle and the dip dependences by analyzing the data derived from 23 ionosonde stations during seven eclipse events. Both the measured and simulated results show that these factors have significant effect on the ionospheric response. The larger F2-layer height causes the smaller decrease in foF2, which is because that the electron density response decreases with height. The larger dip results in the smaller eclipse effect on the F2 layer, because the larger dip would cause the more diffusion from the top ionosphere which can make up for the plasma loss. The foF2 response is largest at midday and decreases with the increasing SZA. The foF2 response is larger at high solar activity than at low solar activity. The simulated results show that the local time and solar activity discrepancy of the eclipse effect mainly attribute to the difference of the background neutral gas density. 4. I carried out a statistical study on the latitudinal dependence of the ionospheric response to solar eclipses and modeled this latitudinal dependence by the ionospheric model. Both the observations and simulations show that the foF2 and TEC responses have the same latitudinal dependence: the eclipse effects on foF2 and TEC are smaller at low latitudes than at middle latitudes; at the middle latitudes (>40°), the eclipse effect decreases with increasing latitude. In addition, the simulated results show the change in electron temperature at the heights of above 300 km of low latitudes is much smaller than that at the same heights of middle latitudes. This is due to the smaller decrease in photoelectron production rate at its conjugate low heights. 5. By analyzing the observed data during the October 3, 2005 solar eclipse, I find some significant disturbances in the conjugate region of the eclipse region, including a decrease in Te, an increase in foF2 and TEC, and an uprising in hmF2. I also simulated the ionosphere behavior during this eclipse using a mid-low latitude ionospheric model. The simulations reproduce the measured ionospheric disturbances mentioned above in the conjugated hemisphere. The simulations show that the great loss of arriving photoelectron heat from the eclipse region is the principal driving source for the disturbances in the conjugate hemisphere.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Selectin-ligand interactions are crucial to such biological processes as inflammatory cascade or tumor metastasis. How transient formation and dissociation of selectin-ligand bonds in blood flow are coupled to molecular conformation at atomic level, however, has not been well understood. In this study, steered molecular dynamics (SMD) simulations were used to elucidate the intramolecular and intermolecular conformational evolutions involved in forced dissociation of three selectin-ligand systems: the construct consisting of P-selectin lectin (Lec) and epidermal growth factor (EGF)-like domains (P-LE) interacting with synthesized sulfoglycopeptide or SGP-3, P-LE with sialyl Lewis X (sLeX), and E-LE with sLeX. SMD simulations were based on newly built-up force field parameters including carbohydrate units and sulfated tyrosine(s) using an analogy approach. The simulations demonstrated that the complex dissociation was coupled to the molecular extension. While the intramolecular unraveling in P-LESGP-3 system mainly resulted from the destroy of the two anti-parallel sheets of EGF domain and the breakage of hydrogen-bond cluster at the Lec-EGF interface, the intermolecular dissociation was mainly determined by separation of fucose (FUC) from Ca2+ ion in all three systems. Conformational changes during forced dissociations depended on pulling velocities and forces, as well as on how the force was applied. This work provides an insight into better understanding of conformational changes and adhesive functionality of selectin-ligand interactions under external forces.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Reaction of thiamine or thiamine monophosphate (TMP) with K2Pt(NO2)(4) afforded a metal complex, Pt(thiamine)(NO2)(3) (1), and two salt-type compounds, (H-thiamine)[Pt(NO2)(4)]. 2H(2)O (2) and (TMP)(2)[Pt(NO2)(4)]. 2H(2)O (3), which were structurally characterized by X-ray diffraction. In 1, the square-planar Pt2+ ion is coordinated to the pyrimidine N(1'), a usual metal-binding site, and three NO2- groups. The thiamine molecule exists as a monovalent cation in 1 and a divalent cation in 2 while the TMP molecule is a monovalent cation in 3. In each compound, thiamine or TMP adopts the usual F conformation and forms two types of host-guest-like interactions with anions, which are of the bridging forms, C(2)-H . . . anion . . . pyrimidine-ring and N(4'1)-H(...)anion(...)thiazolium-ring. In 3, there is an additional anion-bridging interaction between the pyrimidine and thiazolium rings of TMP, being of the form C(6')-H . . . anion . . . thiazolium-ring. The salts 2 and 3 show similar hydrogen-bonded cyclic dimers of thiamine or TMP between which the anions are held. Results are compared with those of the other thiamine-platinum complexes. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The fragmentations of three bifunctional phenylether compounds including 2-(2, 6-dichloro)phenoxyl propionitrile, N-hydroxyl-4-butoxyl phenylacetyl amine(bufexamc) and 2-(1-methylethoxyl) phenol methylcarbamate (Propoxur) under electron impact ionization were reported, Metastable ion(MI) and collision-induced dissociation(CID) at a low energy have been used to study the fragmentation pathways from molecular ions. Apart from the simple bond cleavages, and the unimolecular dissociations via ion/neutral complex intermediate as a competitive mechanism were demonstrated, Moreover, the intramolecular hydrogen transfer and double hydrogen transfers in the fragmentations of these compounds were discussed in detail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interactive pair potential between Al and H is obtained based on the ab initio calculation and the Chen-Mobius 3D lattice inversion formula. By utilizing the pair potentials calculated, the effects of hydrogen on the dislocation emission from crack tip have been studied. The simulated result shows that hydrogen can reduce the cohesive strength for Al single crystal, and then the critical stress intensity factor for partial dislocation emission decreases from 0.11 MPa root m (C-H = 0) to 0.075 MPa root m (C-H=0.72%) and 0.06 MPa root m (C-H = 1.44%). This indicates thar hydrogen can enhance the dislocation emission. The simulation also shows that atoms of hydrogen can gather and turn into small bubbles, resulting in enhancement of the equilibrium vacancy concentration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a previously unknown body-centered-tetragonal structure for ZnO. This structure results from a phase transformation from wurtzite in [0001]-oriented nanorods during uniaxial tensile loading and is the most stable phase for ZnO when stress is above 7 GPa. The stress-induced phase transformation has important implications for the electronic, piezoelectric, mechanical, and thermal responses of ZnO. The discovery of this polymorph brings about a more complete understanding of the extent and nature of polymorphism in ZnO. A crystalline structure-load triaxiality map is developed to summarize the relationship between structure and loading.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The phylogenetic relationships among 12 genera of treefrogs (Family, Rhacophoridae), were investigated based on a large sequence data set, including five nuclear (brain-derived neurotrophic factor, proopiomelanocortin, recombination activating gene 1, tyr