85 resultados para ROS scavenger
Resumo:
该文首先对中国对虾血细胞体外短时培养条件进行了摸索,以期为后来在体外研究中国对虾血细胞吞噬活动中ROS的产生建立基础.在上在实验的基础上,该文利用化学发光法对中国对虾血细胞体外吞噬过程中ROS的产生进行了研究,试图了解血细胞吞噬活动中的化学发光现象.最后利用NBT还原法研究了中国对虾血细胞体外吞噬过程中O<'-><,2>的产生化及一些环境污染物如重金属离子和农药对其吞噬活动中O<'-><,2>的产生影响.
Resumo:
The redlip mullet, Liza haematocheila, is a common species in polyculture as a scavenger in China. Feeding on detritus, redlip mullet transports nutrients from sediments up into the water column and converts them into forms that can be utilized by phytoplankton and affects the relative abundance of detritus and dissolved inorganic nutrients to phytoplankton, zooplankton and other fishes. We used nitrogen and carbon as the indicators in this study to measure the scavenging ability, which means intake of nitrogen or carbon by redlip mullet, and the loss of nutrients. Temperature and body weight significantly affected growth nitrogen, faecal nitrogen and faecal carbon. At a certain temperature, the proportion of growth nitrogen or growth carbon increased while the proportion of excretion nitrogen or respiration carbon decreased with increasing body weight.
Resumo:
The effects of acute temperature challenge on some immune parameters of haemocyte in Zhikong scallop, Chlamys farreri, recognised as a temperature sensitive bivalve species, were evaluated over a short period of time. Scallops were suddenly transferred from 17 degrees C to 11 degrees C, 23 degrees C and 28 degrees C for a period of 72 h. Total haemocyte count (THC), percentage of phagocytic haemocytes, reactive oxygen species (ROS) production, acid phosphatase (ACP) and superoxide dismutase (SOD) activities (in both haemocyte lysate and cell-free haemolymph) were chosen as biomarkers of temperature stress. Results demonstrated that the percentage of phagocytic haemocytes and ACP activity in cell-free haemolymph of scallops challenged at 28 degrees C for 72 h significantly decreased. By contrast, reactive oxygen species production by haemocytes increased when compared to the initial values. It is concluded that haemocyte activities of C. farreri appear to be compromised when scallops were transferred from 17 degrees C to 28 degrees C. Meanwhile, no obvious negative effect of acute temperature stress was detected on haemocyte activities of C. farreri challenged at 11 degrees C, which highlighted the high tolerance of scallops to acute decrease of seawater temperatures. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present study examined the influence of air exposure at different temperatures: a common perturbation associated with aquaculture handling practices, on immune responses in zhikong scallop Chlamys farreri. Scallops were exposed to air for 2 h, 6 h, 12 h and 24 h at 5 degrees C, 17 degrees C and 25 degrees C respectively. Thereafter, a recovery period of 24 h at 17 degrees C was applied. Haemocyte mortality, phagocytosis and reactive oxygen species (ROS) production of haemocytes, acid phosphatase (ACP) and superoxide dismutase (SOD) activity in haemocyte lysates were chosen as immumomarkers of anoxic stress. The results showed that an increase of haemocyte mortality and a decrease of phagocytosis and ACP activity were observed after 2 h of air exposure for all temperatures tested. Moreover, a significant increase of ROS production occurred following 2 h of air exposure at 25 degrees C and 24 h of air exposure at 17 degrees C. Significant differences were also observed in haemocyte mortality, percentage of phagocytic cells and ACP and SOD activity depending on the temperature of air exposure. Finally, after 24 h of recovery at 17 degrees C, percentage of phagocytic haemocytes and ACP activity did not return to initial values. ROS production was significantly higher than before the recovery period and initial values for scallops subjected to air exposure at 5 degrees C. In our study, scallops showed a relative low anoxia tolerance under a high temperature. All the scallops air exposed to 25 degrees C died after the 6 h sampling. In conclusion, air exposure associated to aquaculture practices was demonstrated to strongly affect functional immune activities of scallop haemocytes, and high temperature air exposure caused reduced survival of scallops. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alterornonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1) The blades of L. japonica exhibited symptoms of lesion, bleaching and deterioration when infected by the bacterium, and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L. japonica.
Resumo:
Substantial nutritional and energetic demands m-e associated with immune activation and the maintenance of an efficient immune system. One-year-old Chlamys farreri (Jones and Preston) scallops were maintained ill lantern nets ill different nutritional conditions (satiation and starvation) for 40 days. After the 40-day treatments, the condition index and the total hemocyte count (THC) decreased significantly in the starved group compared with the satiated and initial control groups. The percentage of phagocytic hemocytes also was significantly reduced with starvation. In contrast. no significant effect of starvation was observed oil reactive oxygen species (ROS) production. The acid phosphatase (ACP) activities in cell-free hemolymph increased significantly in scallops in starved and satiated treatments compared with the initial control. whereas ACP activity in hemocyte lysate was significantly lower ill the starved group. These results indicate that starvation stress compromises immunological activities of scallops.
Resumo:
Extracellular superoxide dismutase (ECSOD) is a major extracellular antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). We cloned a novel ECSOD from the bay scallop Argopecten irradians (AiECSOD) by 3' and 5' RACE. The full-length cDNA of AiECSOD was 893 bp with a 657 bp open reading frame encoding 218 amino acids. The deduced amino acid sequence contained a putative signal peptide of 20 amino acids, and sequence comparison showed that AiECSOD had low degree of homology to ECSODs of other organisms. The genomic length of the AiECSOD gene was about 5276 bp containing five exons and six introns. The promoter region contained many putative transcription factor binding sites such as c-Myb, Oct-1, Sp1, Kruppel-like, c-ETS, NF kappa B, GATA-1, AP-1, and Ubx binding sites. Furthermore, tissue-specific expressions of AiECSOD and temporal expressions of AiECSOD in haemocytes of bay scallops challenged with bacteria Vibrio anguillarum were quantified using qRT-PCR. High levels of expression were detected in haemocytes, but not in gonad and mantle. The expression of AiECSOD reached the highest level at 12 h post-injection with V. anguillarum and then returned to normal between 24 h and 48 h post-injection. These results indicated that AiECSOD was an inducible protein and that it may play an important role in the immune responses against V anguillarum. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
通过分析一氧化氮(nitric oxide,NO)、活性氧(reactive oxygen species,ROS)和干旱胁迫对小麦根氧化还原状态和叶片脱落酸(abscisic acid,ABA)积累的影响,探讨了干旱胁迫下NO和H2O2调节ABA合成的可能机制。结果表明:干旱胁迫处理初期小麦根还原型谷胱甘肽含量降低、抗氧化酶活性发生振荡变化,细胞氧化还原状态向氧化型转变。NO和H2O2能模拟干旱胁迫的作用使细胞状态向氧化型转变,还可以使小麦叶片ABA积累量上升。干旱胁迫下NO和H2O2对ABA合成的调节作用可能是通过调节细胞氧化还原状态进行。
Resumo:
A microchip electrophoresis method coupled with laser-induced fluorescence (LIF) detection was established for simultaneous determination of two kinds of intracellular signaling molecules (reactive oxygen species, ROS, and reduced glutathione, GSH) related to apoptosis and oxidative stress. As the probe dihydrorhodamine-123 (DHR123) can be converted intracellularly by ROS to the fluorescent rhodamine-123 (Rh123), and the probe naphthalene-2,3-dicarboxaldehyde (NDA) can react quickly with GSH to produce a fluorescent adduct, rapid determination of Rh-123 and GSH was achieved on a glass microchip within 27 s using a 20 mm borate buffer (pH 9.2). The established method was tested to measure the intracellular ROS and GSH levels in acute promyelocytic leukemia (APL)-derived NB4 cells. An elevation of intracellular ROS and depletion of GSH were observed in apoptotic N134 cells induced by arsenic trioxide (AS(2)O(3)) at low concentration (1-2 mu m). Buthionine sulfoximine (BSO), in combination with AS(2)O(3) enhanced the decrease of reduced GSH to a great extent. The combined treatment of AS(2)O(3) and hydrogen peroxide (H2O2) led to an inverse relationship between the concentrations of ROS and GSH obtained, showing the proposed method can readily evaluate the generation of ROS, which occurs simultaneously with the consumption of the inherent antioxidant.
Resumo:
A single-pass process with the combination of oxidative coupling (OCM) and dehydro-aromatization (MDA) for the direct conversion of methane is carried out. With the assistance of the OCM reaction over the SrO-La2O3/CaO catalyst loaded on top of the catalyst bed, the duration of the dehydro-aromatization reaction catalyzed by a 6Mo/HMCM-49 catalyst shows a significant improvement, and. the initial deactivation rate constant of the overall process revealed about 1.5 x 10(-6) s(-1). Up to 72 h on stream, the yield of aromatics was still maintained at 5.0% with a methane conversion of 9.6%, which is obviously higher than that reported for the conventional MDA process with single catalyst. Upon the TPR results, this wonderful enhancement would be attributed to an in-situ formation of CO2 and H2O through the OCM reaction, which serves as a scavenger for actively removing the coke formed during the MDA reaction via a reverse Boudouard reaction and the water gas reaction as well.