96 resultados para REVERSING SYMMETRY
Resumo:
By the Lie symmetry group, the reduction for divergence-free vector-fields (DFVs) is studied, and the following results are found. A n-dimensional DFV can be locally reduced to a (n - 1)-dimensional DFV if it admits a one-parameter symmetry group that is spatial and divergenceless. More generally, a n-dimensional DFV admitting a r-parameter, spatial, divergenceless Abelian (commutable) symmetry group can be locally reduced to a (n - r)-dimensional DFV.
Resumo:
Three-dimensional modeling results show that the appearance of the long laminar plasma jet is less influenced by natural convection even as it is issuing into ambient air horizontally. However, plasma parameter distributions may deviate from axi-symmetry
Resumo:
The deformation of alkali metals K, Rb, and Cs under epitaxial deformation is studied via the ab initio pseudopotential plane wave method using the local-density approximation. Under loading from the stable fee phase, metastable stares along directions [001], [111], and [201] are identified. One metastable state, presented at direction [201], has a very low symmetry in contrast to the planes [001] and [201]. Our results show that the softening direction and sequences of growth is significantly affected by the existence of the metastable states and magnitude of the energy barrier. The resulting softening sequences from soft to hard are [201], [110], [001], and [111] under biaxial compression and [001], [111], [201], and [110] under biaxial tension. An orthorhombic deformation path is used to investigate the fact, that the structure of the alkali films K and Cs evolve from the quasihexagonal structure into the (110)-oriented bcc structure, observed by experiments.
Resumo:
Using the constitutive equation of a rubber-like materials given by Gao (1997), this paper investigates the problem of a cone under tension of a concentrated force at its apex. Under consideration is the axial-symmetry case and the large strain is taken into account. The stress strain fields near the apex are obtained by both asymptotic analysis and finite element calculation. The two results are consistent well. When the cone angle is 180 degrees, the solution becomes that of non-linear Boussinesq's problem for tension case.
Resumo:
A method to determine the admissibility of symbolic sequences and to find the unstable periodic orbits corresponding to allowed symbolic sequences for the diamagnetic Kepler problem is proposed by using the ordering of stable and unstable manifolds. By investigating the unstable periodic orbits up to length 6, a one to one correspondence between the unstable periodic orbits and their corresponding symbolic sequences is shown under the system symmetry decomposition.
Resumo:
On the basis of the two-continuum model of dilute gas-solid suspensions, the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers, when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles. As a model problem, the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas. The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves.
Resumo:
An infinite elastic solid containing a doubly periodic parallelogrammic array of cylindrical inclusions under longitudinal shear is studied. A rigorous and effective analytical method for exact solution is developed by using Eshelby's equivalent inclusion concept integrated with the new results from the doubly quasi-periodic Riemann boundary value problems. Numerical results show the dependence of the stress concentrations in such heterogeneous materials on the periodic microstructure parameters. The overall longitudinal shear modulus of composites with periodic distributed fibers is also studied. Several problems of practical importance, such as those of doubly periodic holes or rigid inclusions, singly periodic inclusions and single inclusion, are solved or resolved as special cases. The present method can provide benchmark results for other numerical and approximate methods. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve Our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220
Resumo:
The elastic plane problem of collinear rigid lines under arbitrary loads is dealt with. Applying the Riemann-Schwarz symmetry principle integrated with the analysis of the singularity of complex stress functions, the general formulation is presented, and the closed-form solutions to several problems of practical importance are given, which include some published results as the special cases. Lastly the stress distribution in the immediate vicinity of the rigid line end is examined.
Resumo:
The thermal conductivity of periodic composite media with spherical inclusions embedded in a homogeneous matrix is discussed. Using Green's function, we show that the Rayleigh identity can be generalized to deal with the thermal properties of these systems. A technique for calculating effective thermal conductivities is proposed. Systems with cubic symmetries (including simple cubic, body centered cubic and face centered cubic symmetry) are investigated in detail, and useful formulae for evaluating effective thermal conductivities are derived.
Resumo:
For most practically important plane elasticity problems of orthotropic materials, stresses depend on elastic constants through two nondimensional combinations. A spatial rescaling has been found to reduce the orthotropic problems to equivalent problems in materials with cubic symmetry. The latter, under favorable conditions, may be approximated by isotropic materials. Consequently, solutions for orthotropic materials can be constructed approximately from isotropic material solutions or rigorously from cubic ones. The concept is developed to gain insight into the interplay between anisotropy and finite geometry. The inherent simplicity of the solutions allows a variety of technical problems to be addressed efficiently. Included are stress concentration related cracking, effective contraction of orthotropic material specimens, crack deflection onto easy fracture planes, and surface flaw induced delamination.
Resumo:
From the partial differential equations of hydrodynamics governing the movements in the Earth's mantle of a Newtonian fluid with a pressure- and temperature-dependent viscosity, considering the bilateral symmetry of velocity and temperature distributions at the mid-plane of the plume, an analytical solution of the governing equations near the mid-plane of the plume was found by the method of asymptotic analysis. The vertical distribution of the upward velocity, viscosity and temperature at the mid-plane, and the temperature excess at the centre of the plume above the ambient mantle temperature were then calculated for two sets of Newtonian rheological parameters. The results obtained show that the temperature at the mid-plane and the temperature excess are nearly independent of the rheological parameters. The upward velocity at the mid-plane, however, is strongly dependent on the rheological parameters.
Resumo:
The uniqThe unique lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband formation in the primary shear zone (PSZ). A coupled thermomechanical orthogonal cutting model, taking into account force, free volume and energy balance in the PSZ, is developed to quantitatively characterize lamellar chip formation. Its onset criterion is revealed through a linear perturbation analysis. Lamellar chip formation is understood as a self-sustained limit-cycle phenomenon: there is autonomous feedback in stress, free volume and temperature in the PSZ. The underlying mechanism is the symmetry breaking of free volume flow and source, rather than thermal instability. These results are fundamentally useful for machining BMGs and even for understanding the physical nature of inhomogeneous flow in BMGs.ue lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband.
Resumo:
The hydrodynamics of a free flapping foil is studied numerically. The foil undergoes a forced vertical oscillation and is free to move horizontally. The effect of chord-thickness ratio is investigated by varying this parameter while fixing other ones such as the Reynolds number, the density ratio, and the flapping amplitude. Three different flow regimes have been identified when we increase the chord-thickness ratio, i.e., left-right symmetry, back-and-forth chaotic motion, and unidirectional motion with staggered vortex street. It is observed that the chord-thickness ratio can affect the symmetry-breaking bifurcation, the arrangement of vortices in the wake, and the terminal velocity of the foil. The similarity in the symmetry-breaking bifurcation of the present problem to that of a flapping body under constraint is discussed. A comparison between the dynamic behaviors of an elliptic foil and a rectangular foil at various chord-thickness ratios is also presented.