141 resultados para Precipitation variability
Resumo:
Magnetic nanoparticles of nickel ferrite (NiFe2O4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles (d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at similar to 11 nm and then decreases for larger particles. Typical blocking effects were observed below similar to 225 K for all the prepared samples. The superparamagnetic blocking temperature (T-B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles. (c) 2008 Elsevier B. V. All rights reserved.
Resumo:
Magnetic nanoparticles of Ni-doped cobalt ferrite [Co1-xNixFe2O4(0 <= x <= 1)] synthesized by coprecipitation route have been studied as a function of doping concentration (x) and particle size. The size of the particles as determined by X-ray diffractometer (XRD) and transmission electron microscope (TEM) analyses was found in the range 12-48 nm. The coercivity (H-C) and saturation magnetization (M-S) showed a decreasing behavior with increasing Ni concentration. M-S of all the samples annealed at 600 degrees C lies in the range 65.8-13.7 emu/gm. Field-cooled (FC) studies of the samples showed horizontal shift (exchange bias) and vertical shift in the magnetization loop. Strong decrease in exchange bias (H-b) and vertical shift (delta M) was found for low Ni concentrations while negligible decrease was found at higher concentrations. The presence of exchange bias in the low Ni-concentration region has been explained with reference to the interface spins interaction between a surface region (with structural and spin disorder) and a ferrimagnetic core region. M(T) graphs of the samples showed a decreasing trend of blocking temperature (T-b) with increasing Ni concentration. The decrease of T-b with increasing Ni concentration has been attributed to the lower anisotropy energy of Ni+2 ions as compared to Co+2 that increases the probability of the jump across the anisotropy barrier which in turn decreases the blocking temperature of the system.
Resumo:
The vertical growth of shoots of the seagrass Thalassia testudinum Banks ex Konig in four meadows, along a range of exposure to waves, in the Mexican Caribbean was examined to elucidate its magnitude and its relationship to sediment dynamics. Average internodal length varied between 0.17 and 12.75 mm, and was greatest in the meadow which experienced the greatest burial by sand waves moved by Hurricane Gilbert (September 1988). Internodal length showed annual cycles, confirmed by the flower scars always preceding or coinciding with the annual minimum internodal length. These annual cycles on the shoot allowed estimation of annual leaf production, which varied, on average, between 14.2 and 19.3 leaves per shoot year-1. High vertical shoot growth was associated with long internodes and high leaf production rate, which increased with increasing vertical shoot growth to a maximum of approximately 25 leaves per shoot year-1, with vertical growth of about 30 mm year-1 or more. Average internodal length showed substantial interannual differences from perturbations derived from the passage of Hurricane Gilbert. The growth response of the plants surviving moderate burial and erosion after the hurricane involved enhanced vertical growth and increased leaf production, and reduced vertical growth, respectively, after 1988. The variability in shoot vertical growth of T testudinum can be separated into seasonal changes in plant growth, and long-term variability associated with episodic perturbations involving sediment redistribution by hurricanes.
Resumo:
Lake of the Woods (LOW) is an international waterbody spanning the Canadian provinces of Ontario and Manitoba, and the U.S. state of Minnesota. In recent years, there has been a perception that water quality has deteriorated in northern regions of the lake, with all increase in the frequency and intensity of toxin-producing cyanobacterial blooms. However, given the lack of long-term data these trends are difficult to verify. As a first step, we examine spatial and seasonal patterns in water quality in this highly complex lake on the Canadian Shield. Further, we examine surface sediment diatom assemblages across multiple sites to determine if they track within-take differences in environmental conditions. Our results show that there are significant spatial patterns in water quality in LOW. Principal Component Analysis divides the lake into three geographic zones based primarily on algal nutrients (i.e., total phosphorus, TP), with the highest concentrations at sites proximal to Rainy River. This variation is closely tracked by sedimentary diatom assemblages, with [TP] explaining 43% of the variation in diatom assemblages across sites. The close correlation between water quality and the surface sediment diatom record indicate that paleoecological models could be used to provide data on the relative importance of natural and anthropogenic sources of nutrients to the lake.