227 resultados para Polarization modes
Resumo:
We present the design and the simulation of an ultracompact high efficiency polarization beam splitter (PBS) based on the properties of the light waves propagating in straight waveguide and composite structure photonic crystal. The splitting properties of the PBS are numerically simulated and analyzed by using the plane wave expansion (PWE) method and finite difference time domain (FDTD) method. The PBS consists of three parts, namely, input waveguide, beam structure and output waveguide. It is shown that a high efficiency and a large separating angle for TE mode and TM mode can be achieved. Owing to these excellent features, including small size and high rate, the PBS makes a promising candidate in the future photonic integrated circuits.
Resumo:
Microcylinder resonators with multiple ports connected to waveguides are investigated by 2D finite-difference time-domain (FDTD) simulation for realizing microlasers with multiple outputs. For a 10 mu m radius microcylinder with a refractive index of 3.2 and three 2 mu m wide waveguides, confined mode at the wavelength of 1542.3 nm can have a mode Q factor of 6.7 x 10(4) and an output coupling efficiency of 0.76. AlGaInAs/InP microcylinder lasers with a radius of 10 mu m and a 2 mu m wide output waveguide are fabricated by planar processing techniques. Continuous-wave electrically injected operation is realized with a threshold current of 4 mA at room temperature, and the jumps of output power are observed accompanying a lasing mode transformation.
Resumo:
We theoretically investigate the electron transport and spin polarization of two coupled quantum wells with Dresselhaus spin-orbit interaction. In analogy with the optical dual-channel directional coupler, the resonant tunneling effect is treated by the coupled-mode equations. We demonstrate that spin-up and -down electrons can be completely separated from each other for the system with an appropriate system geometry and a controllable barrier. Our result provides a new approach to construct spin-switching devices without containing any magnetic materials or applying a magnetic field. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2981204]
Resumo:
Electron spin-dependent transport properties have been theoretically investigated in two-dimensional electron gas (2DEG) modulated by the magnetic field generated by a pair of anti-parallel magnetization ferromagnetic metal stripes and the electrostatic potential provided by a normal metal Schottky stripe. It is shown that the energy positions of the spin-polarization extremes and the width of relative spin conductance excess plateau could be significantly manipulated by the electrostatic potential strength and width, as well as its position relative to the FM stripes. These interesting features are believed useful for designing the electric voltage controlled spin filters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguides is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.5 mu m. A finite-difference time-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB.
Resumo:
The characteristics of whispering-gallery modes (WGMs) in 3-D cylindrical, square, and triangular microcavities with vertical optical confinement of semiconductors are numerically investigated by the finite-difference time-domain (FDTD) technique. For a microcylinder with a vertical refractive index 3.17/3.4/3.17 and a center layer thickness 0.2 mu m, Q-factors of transverse electric (TE) WGMs around wavelength 1550 nm are smaller than 10(3), as the radius R < 4 mu m and reach the orders of 10(4) and 10(6) as R = 5 and 6 mu m, respectively. However, the Q-factor of transverse magnetic (TM) WGMs at wavelength 1.659 mu m reaches 7.5 x 10(5) as R = 1 mu m. The mode coupling between the WGMs and vertical radiation modes in the cladding layer results in vertical radiation loss for the WGMs. In the microcylinder, the mode wavelength of TM WGM is larger than the cutoff wavelength of the vertical radiation mode with the same mode numbers, so TM WGMs cannot couple with the vertical radiation mode and have high Q-factor. In contrast, TE WGMs can couple with the corresponding vertical radiation mode in the 3-D microcylinder as R < 5 mu m. However, the mode wavelength of the TE WGM approaches (is larger than) the cutoff wavelength of the corresponding radiation modes at R = 5 mu m (6 mu m), so TE WGMs have high Q-factors in such microcylinders too. The results show that a critical lateral size is required for obtaining high, Q-factor TE WGMs in the 3-D microcylinder. For 3-D square and triangular microcavities, we also find that the Q-factor of TM WGM is larger than that of TE WGM.
Resumo:
Origin of polarization sensitivity of photonic wire waveguides (PWWs) is analysed and the effective refractive indices of two different polarization states are calculated by the three-dimensional full-vector beam propagation method. We find that PWWs are polarization insensitive if the distribution of its refractive index is uniform and the cross section is square. An MRR based on such a polarization-insensitive PWW is fabricated on an 8-inch silicon-on-insulator wafer using 248-nm deep ultraviolet lithography and reactive ion etching. The quasi-TE mode is resonant at 1542.25 nm and 1558.90 nm, and the quasi-TM mode is resonant at 1542.12 nm and 1558.94 nm. The corresponding polarization shift is 0.13 nm at the shorter wavelength and 0.04 nm at the longer wavelength. Thus the fabricated device is polarization independent. The extinction ratio is larger than 10 dB. The 3 dB bandwidth is about 2.5 nm and the Qvalue is about 620 at 1558.90 nm.
Resumo:
Tetragonal PbTiO3 under uniaxial stress along the c-axis is investigated from first-principles. The structural parameters, polarization, and squares of the lowest optical phonon frequencies for E(1TO) and A(1)(1TO) modes at Gamma show abrupt changes near a stress sigma(c) of 1.04 GPa, which is related to the dramatic change of elastic constant c(33) resulting from the uniaxial stress applied along the c-axis. We also find that the uniaxial compressive stress could enhance the piezoelectric stress coefficients, whereas the uniaxial tensile stress could enhance the piezoelectric strain coefficients. It is also found that when the magnitude of uniaxial compressive stress sigma(33) is greater than 12 GPa, PbTiO3 is transformed to the paraelectric tetragonal phase.
Resumo:
Strongly vertically coupled InAs/GaAs quantum dots (QDs) with modulation doping are investigated, and polarization dependence of two-color absorptions was observed. Analysis of photoluminescence (PL) and absorption spectra shows that s-polarized absorptions at. 10.0 and 13.4 mu m, stem from the first excited state E-1 and the second excited state E-2 in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively, whereas p-polarized absorptions at 10.0 and 8.2 mu m stem from the first excited state E-1 and the ground E-g in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively. These measurements illustrate that transitions from excited states are more sensitive to normal incidence, which are very important in designing QD infrared detector. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a lattice dynamic treatment for the total potential energy of single-walled carbon nanotubes (SWCNTs) which is, apart from a parameter for the nonlinear effects, extracted from the vibrational energy of the planar graphene sheet. The energetics, elasticity and lattice dynamics are treated in terms of the same set of force constants, independently of the tube structures. Based upon this proposal, we have investigated systematically the relaxed lattice configuration for narrow SWCNTs, the strain energy, the Young's modulus and Poisson ratio, and the lattice vibrational properties with respect to the relaxed equilibrium tubule structure. Our calculated results for various physical quantities are nicely in consistency with existing experimental measurements. In particular, we verified that the relaxation effect makes the bond length longer and the frequencies of various optical vibrational modes softer. Our calculation provides evidence that the Young's modulus of an armchair tube exceeds that of the planar graphene sheet, and that the large diameter limits of the Young's modulus and Poisson ratio are in agreement with the experimental values of graphite; the calculated radial breathing modes for ultra-narrow tubes with diameters ranging between 2 and 5 angstrom coincide with the experimental results and the existing ab initio calculations with satisfaction. For narrow tubes with a diameter of 20 angstrom, the calculated frequencies of optical modes in the tubule's tangential plane, as well as those of radial breathing modes, are also in good agreement with the experimental measurements. In addition, our calculation shows that various physical quantities of relaxed SWCNTs can actually be expanded in terms of the chiral angle defined for the corresponding ideal SWCNTs.
Resumo:
Elastic constants, the bulk modulus, Young's modulus, band-gap bowing coefficients, spontaneous and piezoelectric polarizations, and piezoelectric coefficients of hexagonal AlxGa1-xN ternary alloys are calculated using first-principles methods. The fully relaxed structures and the structures subjected to homogeneous biaxial and uniaxial tension are investigated. We show that the biaxial tension in the plane perpendicular to the c axis and the uniaxial tension along the c axis all reduce the bulk modulus, whereas they reduce and enhance Young's modulus, respectively. We find that the biaxial and uniaxial tension can enhance the bowing coefficients. We also find that the biaxial tension can enhance the total polarization, while the uniaxial tension will suppress the total polarization. (C) 2008 American Institute of Physics.
Resumo:
Mode characteristics of three-dimensional (3-D) microsquare resonators are investigated by finite-difference time-domain (FDTD) simulation for the transverse electric (TE)-like and the transverse magnetic (TM)-like modes. For a pillar microsquare with a side length of 2 pin in air, we have Q-factors about 5 X. 103 for TM-like modes at the wavelength of 1550 run, which are one order larger than those of TE-like modes, as vertical refractive index distribution is 3.17/3.4/3.17 and the cororresponding center layer thickness is 0.2 mu m. The mode field patterns show that TM-like modes have much weaker vertical radiation coupling loss than TE-like modes. TM-like modes can have high Q-factors in a microsquare with weak vertical field confinement.
Resumo:
We theoretically study the spatial behaviors of spin precessions modulated by an effective magnetic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field, we find some laws of spin precession in the system, by which we explain some previous phenomena of spin precession, and predict a controllable electron spin polarization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit interaction.
Resumo:
Generally, dipole mode is a doubly degenerate mode. Theoretical calculations have indicated that the single dipole mode of two-dimensional photonic crystal single point defect cavity shows high polarization property. We present a structure with elongated lattice, which only supports a single y-dipole mode. With this structure we can eliminate the degeneracy, control the lasing action of the cavity and demonstrate the high polarization property of the single dipole mode. In our experiment, the polarization extinction ratio of the y-dipole mode is as high as 51 1.
Resumo:
In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future. (C) 2009 Optical Society of America