140 resultados para Pepper cultivation
Resumo:
随着化工行业的发展,大量有毒有害难降解有机物随工业废水的排放进入环境,这些物质能够在环境中长期存在、积累和扩散,通过食物链对动植物的生存及人类的健康造成不良影响。本文以苯酚、对氯硝基苯、氯苯和十六烷为模拟污染物,以前期研制的功能菌剂为对象,经过紫外线线诱变筛选出优于出发菌株的功能菌,对诱变后功能菌的理化性能进行了研究,对菌种进行了鉴定,在此基础上,就其相互之间的微生态关系进行研究,为混合发酵提供理论基础,并就其最佳发酵条件及发酵参数进行了研究,最后对发酵产品的性能进行了检测。目前,国内外有关功能菌剂的研究还存在多方面的不足,主要包括:①由于多菌种混合发酵过程较为复杂,各菌之间存在复杂的相互作用,影响因素较多,关于菌种之间的相互关系研究得很少,环境功能菌剂的发酵方法大多采用单独发酵后混合的方式。单独发酵对原材料、设备和能源的利用率较低,对于多菌种制剂发酵,在设备、能源和原材料的方面造成的浪费更大,将会大幅增加菌剂的生产成本,影响多菌种功能菌剂的发展;②功能菌剂生产过程的质量控制方面研究得较少;③功能菌剂产品的稳定性、抗冲击性能研究得较少,对环境微生物制剂的研究主要集中在菌种选育和培养条件优化方面。 通过本论文研究,得到以下主要结论。 (1)在紫外线诱变处理中,用紫外线对发生一定程度退化的出发菌株进行诱变处理后,六株具有高效降解性能的菌株被筛选出来,诱变筛选出的菌株形态和ERIC-PCR指纹图谱与出发菌株相比发生了明显改变;而且诱变后的菌株对目标难降解底物的降解能力均得到改善,其中,FPN、FCB、F14、FEm对目标底物的降解率提高了20%以上;诱变后菌株经过7次连续传代接种后,对目标难降解底物的降解率无显著变化,具有一定的遗传稳定性。并对诱变后的功能菌进行了初步的鉴定,这6株菌都分别是芽孢杆菌。 (2)对诱变后的功能菌相互之间的微生态关系进行了研究,通过抑菌实验、生长量以及基质消耗量的比较,确定它们之间的生长关系是无害共栖关系,可以进行混合发酵。 (3)对该功能菌剂进行发酵培养条件研究,结果表明发酵培养基的最佳成分(g/L):葡萄糖 31.0g/L、玉米粉10.0g/L、磷酸氢二钾1.0g/L、硫酸铵1.1g/L、硫酸镁0.55g/L。通过研究不同的培养条件对菌体生长和降解性能的影响,确定了最佳培养条件:培养基初始pH7.5;最适温度32℃;培养基装液量125mL(250 mL三角瓶),以及培养时间对降解性能的影响,培养20 h的产物对降解最为有利。通过研究添加不同目标污染物对菌体生长和降解性能的影响,确定了添加目标污染物的最佳量以及最佳时间:苯酚投加量:1.125 g/L,对氯硝基苯投加量:0.1 g/L;最佳投加时间为发酵培养开始后4 h。 (4)以摇瓶分批发酵最优条件为基础,对FPN、F10、FCB、FNa、F14 和 FEm进行了摇瓶分批发酵试验。以摇瓶分批发酵试验数据为依据,对功能菌剂分批发酵动力学进行了研究,建立了菌体生长和基质消耗的动力学模型,拟合模型能较好的反映功能菌剂分批发酵过程。 (5)功能菌剂和活性污泥协同作用,可以提高系统的生物降解能力,功能菌剂投加量为2%,新鲜活性污泥3500 mg/L,降解24 h条件下,功能菌剂和活性污泥的协同作用对COD的去除率和对照组相比,最多的提高了36.8%。功能菌剂和活性污泥协同作用以及活性污泥的单独作用,其生物降解过程均符合一级反应动力学过程,功能菌剂和活性污泥协同作用的生物降解动力学方程为:,相关系数97%。采用SBR运行方式,引入功能菌剂的SBR系统明显能够改善和提高生物降解的效率。与仅有活性污泥的系统相比,系统对COD的平均去除率可以提高27.1%,同时,系统的耐负荷冲击以及耐毒害冲击的性能比仅有活性污泥的SBR系统强,特别是负荷冲击对引入功能菌剂的SBR系统影响很小。仅有活性污泥的SBR系统经过负荷冲击和毒害冲击之后,不能恢复到冲击之前的水平,而且系统有效作用时间的周期比引入功能菌剂的SBR系统相比大大缩短,而引入功能菌剂的SBR系统处理效果较为稳定,恢复能力很强。 Along with the development of industries, many recalcitrant organic chemicals have been discharged into natural environments together with wastewaters and can exist in waters, soil and sediments for a long time without degradation. These haz-ardous substances, their byporducts and metabolizabilities can be highly toxic, mu-tagenic and carcinogenic, thereby threatening animals, plants and human health through food chain. Consequently the removal of these compounds is of significant interest in the area of wastewater treatment. In this dissertation, the phenol, hydro-quinone, chlorobenzene and hexadecane treated as the model pollutants, the func-tional microorganism agent was used as the starting strains, they treated with ultra-violet light, and then the mutant strains with high degradation ability were screened out and identified primarily, the relationship between these stains were studied, the medium composition and fermentation conditions were optimized, the degradation ability of the fermented production was tested. The literature survey indicates that the study of the microorganism agent is far from complete and more information is re-quired on following problems. 1, Because of the complexity of relationship in mixed fermentation and the complicated factors, the study is hardly to process.2, There is a lack of information on the quality control of the producing process .3, And there is a lack of information on the stability about the microorganism agent. In this dissertation, the main results of the present study could be summarized as follows: (1)The degenerate starting strains were treated with the ultraviolet light, and six mutant strains with high biodegradation ability were screened out by using the me-dium with selective pressure of model pollutants. The mutant strains had great changes in colonialmorphology and ERIC-PCR fingerprinting. And the mutant strains got obvious advantages over the starting strains in degradation ability and over 20% improvement of removal rates was achieved for FPN、FCB、F14 and FEm. The de-gradation ability of the mutant strains was stable after seven generations. After that, the mutant strains were primarily identified as bacillus respectively. (2) The relationship between these mutant strains was studied. By the compari-son of antibiosis effect, biomass and consumption of substrate, the relationships were neutralism and they could be mixed fermented. (3) The optimized cultivation conditions were as follows: glucose 31.0 g/L, corn power 10 g/L, K2HPO4 1.0 g/L, (NH4)2SO4 1.1 g/L, MgSO4 0.55 g/L, initial pH7.5, temperature 32℃, working volume 125 mL/250 mL, and cultivation time 20h (con-sidering the time effect on degradation ability), adding pollutants phenol (1.125 g/L) and hydroquinone (0.1 g/L) into the broth at 4 h after cultivation. (4) Based on the above optimum condition, the batch fermentation was per-formed with strains FPN, F10, FCB, FNa, F14 and FEm in shake flask. The batch fermentation kinetics was studied based on the experimental data. Two kinetic models were constructed which could reflect the regularity of growth and substrate consump-tion in the process of batch fermentation. (5) The co-operation of functional microorganism agent and activated sludge could raise biodegradation of system by adding some microorganism agent and 3500 mg/L fresh activated sludge. Bioaugumentation by the addition of high effective deg-radation culture enhanced the treatment effect of SBR system and the COD removal rate was increased by 20%-36.8%. Its biodegradation matched first-order dynamical reaction equation, and the reaction equation was ln0.2327.391ct=−+. The micro-organism agent had the effect of optimization to activated sludge micro-ecosystem. The SBR system adding 2% microorganism agent, the average COD removal rate of that was increased by 27.1% and stronger anti-shock ability to load and toxicant were achieved (compared with SBR system just adding activated sludge). Especially the load-shock has barely effect to the SBR system adding microorganism agent. After the load and toxicant shock, the SBR system just adding activated sludge couldn’t come back to original level and the activated sludge micro-ecosystem was frustrated. The applying of microorganism agent increased biological activity and system’s re-sistance ability to load shock and toxicant shock.
Resumo:
Toward the development of an in vitro cultivation of marine sponge cells for sustainable production of bioactive metabolites, the attachment characteristics of marine sponge cells of Hymeniacidon perleve on three types of microcarriers, Hillex, Cytodex 3, and glass beads, were studied. Mixed cell population and enriched cell fractions of specific cell types by Ficoll gradient centrifugation (6%/8%/15%/20%) were also assessed. Cell attachment ratio (defined as the ratio of cells attached on microcarrier to the total number of cells in the culture) on glass beads is much higher than that on Cytodex 3 and Hillex for both mixed cell population and cell fraction at Ficoll 15-20% interface. The highest attachment ratio of 41% was obtained for the cell fraction at Ficoll 15-20% interface on glass beads, which was significantly higher than that of a mixed cell population (18%). The attachment kinetics on glass beads indicated that the attachment was completed within 1 h. Cell attachment ratio decreases with increase in cell-to-microcarrier ratio (3-30 cells/bead) and pH (7.6-9.0). The addition of serum and BSA (bovine serum albumin) reduced the cell attachment on glass beads.
Resumo:
Marine sponges (Porifera) possess an extraordinary diversity of bioactive metabolites for new drug discovery and development. In vitro cultivation of sponge cells in a bioreactor system is very attractive for the sustainable production of sponge-derived bioactive metabolites; however, it is still a challenging task. The recent establishment of sponge primmorphs, multicellular aggregates from dissociated mixed-cell population (MCP), has been widely acknowledged to hold great promise for cultivation in vitro. Here we present a new method to establish an in vitro sponge primmorph culture from archaeocyte-dominant cell population (ADCP) enriched by a Ficoll gradient, rather than a mixed-cell population (MCP). Our rationale is based upon the totipotency (the ability of a cell to differentiate into other cell types) of archaeocyte cells and the different biological functions of various sponge cell types. A sponge, Hymeniacidon perleve collected from the China Yellow Sea was used as a model system for this investigation. Distinct dynamics of primmorph formation were observed while significant increases in DNA synthesis, cell proliferation (up to threefold), and cell growth (up to fourfold) were achieved. Furthermore, a time-dependent spiculogenesis was clearly demonstrated in our longterm culture, indicating high metabolic activity of primmorphs from the ADCP. This new method represents an important step forward to advance sponge cell culture in vitro that may lead to commercial exploitation of sponge-derived drugs. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The establishment and optimization of in vitro primmorph formation from a Chinese sponge, Stylotella agminata (Ridley), collected from the South China Sea, were investigated. Our aims were to identify the key factors affecting primmorph formation in this species and to optimize the technique for developing an in vitro primmorph culture system. The size of dissociated cells from S. agminata is relatively small, in the range between 5 and 10 mum. Round-shaped primmorphs of less than 100 gm were formed 3 days after transferring the dissociated cells into seawater containing Ca2+ and Mg2+. The effect of various cell dissociation conditions, inoculum. cell density, concentration of antibiotics, pH, and temperature was further investigated upon the formation of primmorphs. The time required for primmorph formation, primmorph size distribution, and the proliferating capability were microscopically documented. Healthy sponge S. agminata, inoculum. cell density and culture temperature play a critical role for the successful formation of primmorphs and that the microbial contamination will have to be controlled. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The most biological diversity on this planet is probably harbored in soils. Understanding the diversity and function of the microbiological component of soil poses great challenges that are being overcome by the application of molecular biological approaches. This review covers one of many approaches being used: separation of polymerase chain reaction (PCR) amplicons using denaturing gradient gel electrophoresis (DGGE). Extraction of nucleic acids directly from soils allows the examination of a community without the limitation posed by cultivation. Polymerase chain reaction provides a means to increase the numbers of a target for its detection on gels. Using the rRNA genes as a target for PCR provides phylogenetic information on populations comprising communities. Fingerprints produced by this method have allowed spatial and temporal comparisons of soil communities within and between locations or among treatments. Numerous samples can be compared because of the rapid high throughput nature of this method. Scientists now have the means to begin addressing complex ecological questions about the spatial, temporal, and nutritional interactions faced by microbes in the soil environment.
Resumo:
A method for measuring the long- and medium-term turnover of soil organic matter is described. Its principle is based on the variations of 13C natural isotope abundance induced by the repeated cultivations of a plant with a high 13C/12C ratio (C4 photosynthetic pathway) on a soil which has never carried any such plant. The 13C/12C ratio in soil organic matter being about equal to the 13C/12C ratio of plant materials from which it is derived, changing the 13C content of the organic inputs to the soil (by altering vegetation from C3 type into C4 type) is equivalent to a true labelling in situ of the organic matter. Two cases of continuous corn cultivation (Zea mays: δ13C = −12%.) on soils whose initial organic matter average δ13C is −26%. were studied. The quantity of organic carbon originating from corn (that is the quantity which had turned-over since the beginning of continuous cultivation) was estimated using the 13C natural abundance data. After 13 yr, 22% of total organic carbon had turned-over, in the system studied. Particle size fractions coarser than 50μm on the one hand, and finer than 2μm on the other. contained the youngest organic matters. The turnover rate of silt-sized fractions was slower
Resumo:
Labyrinthulomycetes (Labyrinthulea) are ubiquitous marine osmoheterotrophic protists that appear to be important in decomposition of both allochthonous and autochthonous organic matter. We used a cultivation-independent method based on the labyrinthulomycete-specific primer LABY-Y to PCR amplify, clone, and sequence 68 nearly full-length 18S rDNA amplicons from 4 sediment and 3 seawater samples collected in estuarine habitats around Long Island, New York, USA. Phylogenetic analyses revealed that all 68 amplicons belonged to the Labyrinthulea. Only 15 of the 68 amplicons belonged to the thraustochytrid phylogenetic group (Thraustochytriidae). None of these 15 were similar to cultivated strains, and 11 formed a novel group. The remaining 53 amplicons belonged either to the labyrinthulid phylogenetic group (Labyrinthulidae) or to other families of Labyrinthulea. that have not yet been described. Of these amplicons, 37 were closely related to previously cultivated Aplanochytrium spp. and Oblongichytrium spp. Members of these 2 genera were also cultivated from 1 of the sediment samples. The 16 other amplicons were not closely related to cultivated strains, and 15 belonged to 5 groups of apparently novel labyrinthulomycetes. Most of the novel groups of amplicons also contained environmental sequences from surveys of protist diversity using universal 18S rDNA primers. Because the primer LABY-Y is biased against several groups of labyrinthulomycetes, particularly among the thraustochytrids, these results may underestimate the undiscovered diversity of labyrinthulomycetes.
Resumo:
延安日光温室蔬菜生产从初步发展走向稳定健康发展 ,基础设施建设、栽培技术等取得了一定成绩 ,但技术力量仍感不足 ,农药、化肥污染愈加严重。提出今后进一步发展的对策
Resumo:
分析了黄土丘陵区农业生产现状和存在的主要问题 ,指出广种薄收习惯是导致土地利用不合理 ,植被遭到破坏 ,进而水土流失加剧和生态环境恶化 ,农业生产力降低的根源。该地区生态农业建设的核心是改变广种薄收习惯 ,治理水土流失 ,不断调整优化土地利用和产业结构。依据土地资源状况提出目前阶段 1 2 34的土地利用结构模式。认为在占总土地面积 2 0 %的基本农田和果园 ,只要实行集约化经营就可实现较高的经济效益 ,70 %的土地应为林草地。根据生态农业的基本原则和当前生产水平提出生态农业建设三个阶段的不同指标和适宜治理度 ,当前该地区主导产业的发展应以资源—结构—质量型模式为主
Resumo:
依据黄土丘陵区几十年治理开发的正反两方面经验 ,认为该地区要真正抓住西部大开发大好机遇 ,迅速改变落后面貌 ,实现农业和经济的快速及可持续发展 ,必须在指导思想和农业生产上实现三个根本转变。即 :变以粮为主的广种薄收为高效的农林果牧综合发展 ;变自给自足的小农经济为以商品生产为主的集约经营 ;变生态经济相悖论为生态经济统一观
Resumo:
根据中国西部森林的现状 ,采用生态学与地理学的方法 ,分析了因毁林开荒造成水土流失、洪涝灾害、沙尘风暴、干旱少雨、江河断流、物种减少等危害对国民经济发展所造成的影响 ,以及近几年所产生的一系列生态环境问题 .探讨了退耕还林 (草 )对我国的生态环境治理、西部持续发展、江河整治、国土整治综合措施运用、西部农民脱贫致富的作用 .
Resumo:
通过田间试验研究了地膜覆盖和露地栽培对玉米的土壤温度、水分、养分、盐分含量和土壤生物学特性及硝酸盐含量的变化。结果表明,在玉米生长前期,地膜覆盖5,10,15,20,25 cm土层的土壤日平均温度比露地提高2.4℃、3.0℃、2.9℃、2.2℃、2.7℃,6~7月份比露地降低1.1℃、0.5℃、0.5℃、0.6℃、0.6℃。地膜覆盖0~10,10~20,20~30,30~40 cm土层的土壤含水量分别比露地增加18.84%、10.67%、11.12%和8.9%。地膜覆盖增强了土壤蔗糖酶和碱性磷酸酶的活性,增加了土壤微生物的数量、CO2浓度、土壤呼吸和土壤NO3--N的含量,减少了土壤氮素的损失。地膜覆盖降低了土壤有机质、氮素、速效磷的含量、过氧化氢酶和脲酶的活性及土壤表层的盐分含量。地膜覆盖提高了玉米的生物量和经济产量。
Resumo:
本文针对半干旱地区多变低水的实际田间环境,讨论了作物对不同干旱类型的反应,适度干旱后复水的生理补偿效应,不同类型作物在干湿交替条件下的差异,以及增强作物对多变水环境适应的技术.同时,就多变低水环境的概念、作物对多变低水环境的适应机理以及作物抗旱生理研究与旱农生产实际相衔接等问题提出了若干看法.
Resumo:
现在全国上下深切关注着黄河的重大问题及其对策。其实问题的根源都出自人们对黄河流域尤其黄土高原自然资源的掠夺式开发 ,形成了“3个恶性循环”:广种薄收 ,薄收更广种 ,虽是罪魁祸首 ,但常反被忽视 ,致使生态环境脆弱 ,人民长期贫困 ;只有下游河床越淤越高 ,防洪大堤越筑越高 ,越高越险和断流历时越来越长 ,上溯速度越来越快 2个恶性循环的危害才使人惊恐。不难看出 ,这是恰与形成黄土高原自然规律完全相悖的人为地质过程的结果。可惜它还未引起人们深入充分的认识 ,难怪一向短缺一个为各家合力共识的治本对策。当今国家将经济发展的重点向中、西部转移 ,并要求重建一个山川秀美的大西北 ,黄土高原的持续开发与治理对策就显得更为举足轻重。由此其各项对策都将面临着转变观念、调整思路、实事求是地进行科学分析和抉择。笔者最近从陆地生态的发生发展及其整个地质历史演变过程的研究中发现 :“土壤水库”的发生发展及其演变是陆地生态发生发展的关键和“动力”,只要维护土壤水库的正常发展就能更好地保卫生态环境。黄土高原地区由于得天独厚的降尘堆积环境条件和持续的成壤过程 ,可使降水具有直接渗入“地下水库”的特殊功能。只要维护住高入渗土壤水库的存在就...
Resumo:
以在陕北丘陵沟壑区坡耕地不同耕作法试验 7a的资料为依据 ,论述了不同耕作法的水分利用、土壤水分平衡及单位面积产量和水土保持等综合效益。作物生长主要依赖生育期内自然降雨 ;作物耗水量与每年生育期降雨量及土壤供水量呈显著正相关 ,不同耕作法之间变化不大 ,作物主要利用 0— 12 0 cm土层内的水分。同一年内不同耕作法的综合效益从优到劣、由高到低的排列顺序为宽梯田 >窄梯田 >水平沟 >平播 >水平阶 >隔坡梯田。而水土保持效益排列顺序为 :梯田 >水平沟 >隔坡梯田 >水平阶 >平播 >裸地。认为坡耕地确实应尽快退耕还林还草 ,以加速陕北生态环境建设 ,推进农业结构的战略性调整。