162 resultados para Peginterferon Alpha-2a
Resumo:
直接流是研究重离子碰撞动力学演变和压缩形成的高密核物质性质很好的探针,本论文系统地研究了0.4、0.8和1.16A GeV的Ni+Ni和Pb+Pb碰撞中的直接流。实验是在德国重离子研究中心(GSI)的FOPI探测装置上完成的。论文中,简单总结了中高能区重离子碰撞的现状和描述集体流的主要理论模型,介绍了FOPI探测系统,给出了详细的实验数据分析过程,对所得到的物理结果进行了讨论。本论文工作的重点如下:基于FOPI系统的实验数据,发展了一套质量相关(Z=1离子)的直接流的提取方法。提取了各碰撞系统出射P、D和T粒子在不同碰撞中心度下的微分直接流和积分直接流。研究了P、D和T的直接流对碰撞中心度、系统尺寸和碰撞能量的依赖性,以及对核物质状态方程的敏感性。结果表明:直接流敏感地依赖于碰撞中心度,近中心碰撞具有更强直接流信号;对于轻重两种系统,用常用的AP1/3+AT1/3系数对积分直接流进行了标度,观察到一定的标度性,但不能完全标度;通过研究直接流对碰撞能量的依赖性发现,在0.4-1.2A GeV能区内,随能量升高,直接流在已经达到了饱和,并开始下降,并且P、D和T的变化趋势相同。实验数据与输运模型IQMD计算比较发现,直接流的变化趋势和最大密度变化趋势相同,说明直接流是核物质压缩程度的一个良好探针。计算得到的P、D和T微分和积分的V1值表明,与质量相关的直接流,无论是微分值还是积分值都敏感依赖于模型中EoS参数。比较发现,不同碰撞能量下,重的Pb+Pb系统的数据和软的EoS符合很好,说明核物质不可压缩系数在210 MeV附近,这与文献中的结果相吻合,说明与质量相关的直接流是EoS的敏感探针。对于轻Ni+Ni系统,目前的IQMD还不能重现数据,但其趋向于硬的EoS,需要发展描述碰撞过程更为精细的理论模型。数据整体趋势表明,随者系统变重,中子比例的增加,EoS变软,难以给出同一组IQMD参数来同时解释全部的实验数据。对于所研究的碰撞系统,比较中心快度区斜率行为时发现,P、D和T的直接流与出射粒子质量数呈线性关系,并且出射粒子的积分直接流可以很好的用常数(A+1)/2进行标度。如果出射粒子的直接流用IQMD计算的核阻止进行归一,归一后的直接流与碰撞能量成正比。这证明核阻止与直接流有线性关联,反映了核阻止对于碰撞中核物质达到的最高密度起决定性的作用。论文工作的另一部分是完成了FOPI探测装置中飞行时间探测器的升级工作。研制了新型的玻璃MMRPC,完成了性能的批量测试,并研究了该探测器的高计数率行为。测量结果显示,在实验计数率(0.1 kHz/cm2)条件下,MMRPC时间分辨达到75 ps,探测效率达到98%。当计数率达到3-5 kHz/cm2时,时间分辨和探测效率降至约110 ps和75%。高计数率探测效率变差的幅度可以用DC模型进行解释,然而时间分辨的变化幅度用DC模型难以解释
Resumo:
本研究采用微电极胞外记录技术和微电泳技术探讨了树(左鼠右句)前额叶神经元的电生理及其alpha-2去甲肾上腺素能受体的性质发现:1.树(左鼠右句)前额叶神经元的自发放电以中频(1-10次/秒)为主。2.树(左鼠右句)前额叶存在多模和单模感觉相关神经元。3.树(左鼠右向)前额叶存在clonidine敏感神经元。4.在树(左鼠右向)前额叶多模神经元中,有较高比例的clonidine敏感神经元。本研究提示:树(左鼠右句)前额叶的clonidine敏感神经元大多为单模和多模神经元。推测这些感觉相关神经元的信息处理功能可能与alpha-2受体有关。此外,本研究表明树(左鼠右句)前额叶神经元电活动具有前额叶的特征。
Resumo:
We synthesized methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) (mPEGGA) diblock copolymer by ring-opening polymerization of N-carboxy anhydride of gamma-benzyl-L-glutamate (NCA) using amino-terminated methoxy polyethylene glycol (mPEG) as macroinitiator. Polyelectrolyte complexation between mPEGGA as neutral-block-polyanion and chitosan (CS) as polycation has been scrutinized in aqueous solution as well as in the solid state.
Resumo:
A series of new rare-earth metal bis(alkyl) complexes [L(1-3)Ln(CH2SiMe3)(2)(THF)(n)] (L-1 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H2Me3-2,4,6: Ln = Sc, n = 1 (1a); Ln = Lu, n = 1 (1b); L-2 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H3Et2-2,6: Ln = Sc, n = 1 (2a); Ln = Lu, n = 1 (2b); Ln = Y, n = 1 (2c); L-3 = MeC4H2SCH2NC6H4(Ph)(2)P=(NC6H3Pr2)-Pr-i-2,6: Ln = Sc, n = 0 (3a)) and (LSc)-Sc-4(CH2SiMe3)(2()THF) (4a) (L-4 = C6H5CH2NC6H4(Ph)(2)P=NC6H3Et2-2,6) have been prepared by reaction of rare-earth metal tris(alkyl)s with the corresponding HL1-4 ligands via alkane elimination.
Resumo:
A series of (alpha-diimine)nickel(II) complexes [ArN = C(Nap)C = NAr]NiBr2 (Nap = 1,8-naphthdiyl, Ar = 2,6-Me2C6H3, 3a; Ar = 2,4,6-Me3C6H2 3b; Ar = 2,6-Me-2-4-tBuC(6)H(2), 3c; Ar 2,6-Me-2-4-BrC6H2, 3d; Ar = 2,6-Me-2-4-ClC6H2, 3e; Ar 2,6-iPr(2)C(6)H(3), 3f; Ar = 2,4,6-iPr(3)C(6)H(2), 3g; Ar = 2,6-iPr-4-BrC6H2, 3h) have been synthesized, characterized, and investigated as precatalysts for ethylene polymerization in the presence of modified methylaluminoxane (MMAO).
Resumo:
Silica and Merrifield resin were used as carriers for the support of alpha-diimine nickel(II) precatalysts for ethylene polymerization. The alpha-diimine ligands containing allyl were modified by introducing the reactive Si-Cl end-group, allowing their immobilization via a direct reaction of the Si-Cl groups with the silanols on silica surface or the hydroxyls on the ethanolamine-modified Merrifield resin. The resulting supported alpha-diimine ligands were characterized by analytical and spectroscopic techniques (NMR and Fr-IR).
Resumo:
A refined version of the edge-to-edge matching model is described here. In the original model, the matching directions were obtained from the planes with all the atomic centers that were exactly in the plane, or the distance from the atomic center to the plane which was less than the atomic radius. The direction-matching pairs were the match of straight rows-straight rows and zigzag rows-zigzag rows. In the refined model, the matching directions were obtained from the planes with all the atomic centers that were exactly in the plane.
Resumo:
Hollow deoxyribonucleic acid (DNA)/poly-L-lysine (PLL) capsules were successfully fabricated through a layer-by-layer (LbL) self-assembly of DNA and PLL on porous CaCO3 microparticles, followed by removal of templates with ethylenediamine tetraacetic acid disodium salt (EDTA). The enzymatic degradation of the capsules in the presence of alpha-chymotrypsin was explored. The higher the enzyme concentration, the higher is the degradation rate of hollow capsules. in addition, glutaric dialdehyde (GA) cross-linking was found to be another way to manipulate degradation rate of hollow capsules.
Resumo:
In vitro a-glucosidase inhibition assays and ultrafiltration liquid chromatography with photodiode array detection coupled to electrospray ionization tandem mass spectrometry (ultrafiltration LC-DAD-ESI-MSn) were combined to screen a-glucosidase inhibitors from hawthorn leaf flavonoids extract (HLFE). As a result, four compounds were identified as alpha-glucosidase inhibitors in the HLFE, and their structures were confirmed to be quercetin-3-O-rha-(1-4)-glc-rha and C-glycosylflavones (vitexin-2 ''-O-glucoside, vitexin-2 ''-O-rhamnoside and vitexin) by high-resolution sustained off resonance irradiation collision-induced dissociation (SORI-CID) data obtained by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS).
Resumo:
Theoretical researches are performed on the alpha-R2MoO6 (R = Y, Gd, Tb Dy, Ho, Er, Tm and Yb) and pyrochlore-type R2Mo2O7 (R = Y, Nd, Sm, Gd, Tb and Dy) rare earth molybdates by using chemical bond theory of dielectric description. The chemical bonding characteristics and their relationship with thermal expansion property and compressibility are explored. The calculated values of linear thermal expansion coefficient (LTEC) and bulk modulus agree well with the available experimental values. The calculations reveal that the LTECs and the bulk moduli do have linear relationship with the ionic radii of the lanthanides: the LTEC decreases from 6.80 to 6.62 10(-6)/K and the bulk modulus increases from 141 to 154 GPa when R goes in the order Gd, Tb Dy, Ho, Er, Tm, and Yb in the alpha-R2MoO6 series; while in the R2Mo2O7 series, the LTEC ranges from 6.80 to 6.61 10(-6)/K and the bulk modulus ranges from 147 to 163 GPa when R varies in the order Nd, Sm, Gd, Tb and Dy.
Resumo:
The copolymerizations of ethylene with polar hydroxyl monomers such as 10-undecen-1-ol, 5-hexen-1-ol and 3-buten-1-ol were investigated by the vanadium(III) catalysts bearing bidentate [N,O] ligands (1, [PhN=C(CH3)CHC(Ph)O]VCl2(THF)(2): 2, [PhN=CHC6H4O]VCl2(THF)(2); 3, [PhN=CHC(Ph)CHO]VCl2(THF)(2)). The polar monomers were pretreated by alkylaluminum before the polymerization. High catalytic activities and efficient comonomer incorporations can be easily obtained by changing monomer masking reagents and polymerization conditions in the presence of diethylaluminium chloride as a cocatalyst. The longer the spacer group, the higher the incorporation of the monomer. Under the mild conditions, the incorporation level of 10-undecen-1-ol reached 13.9 mol% in the resultant copolymers was obtained. The reactivity ratios of copolymerization (r(1) = 41.4, r(2) = 0.02, r(1)r(2) = 0.83) were evaluated by Fineman-Ross method. According to C-13 NMR spectra, polar units were located both on the main chain and at the chain end.
Resumo:
A series of novel vanadium(III) complexes bearing iminopyrrolide chelating ligands [2-(RN=CH)C4H3N]V(THF)(2)Cl-2 (2a: R = cyclohexyl; 2b: R = Ph; 2c: R = 2,6-iPr(2)C(6)H(3); 2d: R = p-CF3C6H4; 2e: R = C6F5) have been synthesized and characterized. Single-crystal X-ray diffraction revealed that complexes 2a, 2c and 2e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a co-catalyst, these complexes displayed high catalytic activities up to 48.6 kg PE mmol(V)(-1) h(-1) bar(-1) for ethylene polymerization, and produced high molecular weight polymers. 2a-e/Et2AlCl catalytic systems were tolerant to elevated temperature (70 degrees C) and yielded unimodal polyethylenes, indicating the single site behaviour of these catalysts. By pre-treating with equimolar amounts of alkylaluminums, functional alpha-olefin 10-undecen-1-ol can be efficiently incorporated into polyethylene chains. 10-Undecen-1-ol incorporation can easily reach 15.8 mol% under the mild conditions.
Resumo:
An efficient one-pot synthesis of substituted quinolines from alpha-arylamino ketones in the presence of PBr3 in DMF has been developed. This general protocol provides a novel and facile access to substituted quinolines by sequential Vilsmeier-Haack reaction, intramolecular cyclization and aromatization reactions of alpha-arylamino ketones. PBr3 plays a dual role in the quinoline synthesis: as a key component of the Vilsmeier reagent (PBr3/DMF) and as a reducing reagent.