80 resultados para Partition graphique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ordos Basin is a typical cratonic petroliferous basin with 40 oil-gas bearing bed sets. It is featured as stable multicycle sedimentation, gentle formation, and less structures. The reservoir beds in Upper Paleozoic and Mesozoicare are mainly low density, low permeability, strong lateral change, and strong vertical heterogeneous. The well-known Loess Plateau in the southern area and Maowusu Desert, Kubuqi Desert and Ordos Grasslands in the northern area cover the basin, so seismic data acquisition in this area is very difficult and the data often takes on inadequate precision, strong interference, low signal-noise ratio, and low resolution. Because of the complicated condition of the surface and the underground, it is very difficult to distinguish the thin beds and study the land facies high-resolution lithologic sequence stratigraphy according to routine seismic profile. Therefore, a method, which have clearly physical significance, based on advanced mathematical physics theory and algorithmic and can improve the precision of the detection on the thin sand-peat interbed configurations of land facies, is in demand to put forward.Generalized S Transform (GST) processing method provides a new method of phase space analysis for seismic data. Compared with wavelet transform, both of them have very good localization characteristics; however, directly related to the Fourier spectra, GST has clearer physical significance, moreover, GST adopts a technology to best approach seismic wavelets and transforms the seismic data into time-scale domain, and breaks through the limit of the fixed wavelet in S transform, so GST has extensive adaptability. Based on tracing the development of the ideas and theories from wavelet transform, S transform to GST, we studied how to improve the precision of the detection on the thin stratum by GST.Noise has strong influence on sequence detecting in GST, especially in the low signal-noise ratio data. We studied the distribution rule of colored noise in GST domain, and proposed a technology to distinguish the signal and noise in GST domain. We discussed two types of noises: white noise and red noise, in which noise satisfy statistical autoregression model. For these two model, the noise-signal detection technology based on GST all get good result. It proved that the GST domain noise-signal detection technology could be used to real seismic data, and could effectively avoid noise influence on seismic sequence detecting.On the seismic profile after GST processing, high amplitude energy intensive zone, schollen, strip and lentoid dead zone and disarray zone maybe represent specifically geologic meanings according to given geologic background. Using seismic sequence detection profile and combining other seismic interpretation technologies, we can elaborate depict the shape of palaeo-geomorphology, effectively estimate sand stretch, distinguish sedimentary facies, determine target area, and directly guide oil-gas exploration.In the lateral reservoir prediction in XF oilfield of Ordos Basin, it played very important role in the estimation of sand stretch that the study of palaeo-geomorphology of Triassic System and the partition of inner sequence of the stratum group. According to the high-resolution seismic profile after GST processing, we pointed out that the C8 Member of Yanchang Formation in DZ area and C8 Member in BM area are the same deposit. It provided the foundation for getting 430 million tons predicting reserves and unite building 3 million tons off-take potential.In tackling key problem study for SLG gas-field, according to the high-resolution seismic sequence profile, we determined that the deposit direction of H8 member is approximately N-S or NNE-SS W. Using the seismic sequence profile, combining with layer-level profile, we can interpret the shape of entrenched stream. The sunken lenticle indicates the high-energy stream channel, which has stronger hydropower. By this way we drew out three high-energy stream channels' outline, and determined the target areas for exploitation. Finding high-energy braided river by high-resolution sequence processing is the key technology in SLG area.In ZZ area, we studied the distribution of the main reservoir bed-S23, which is shallow delta thin sand bed, by GST processing. From the seismic sequence profile, we discovered that the schollen thick sand beds are only local distributed, and most of them are distributary channel sand and distributary bar deposit. Then we determined that the S23 sand deposit direction is NW-SE in west, N-S in central and NE-SW in east. The high detecting seismic sequence interpretation profiles have been tested by 14 wells, 2 wells mismatch and the coincidence rate is 85.7%. Based on the profiles we suggested 3 predicted wells, one well (Yu54) completed and the other two is still drilling. The completed on Is coincident with the forecastThe paper testified that GST is a effective technology to get high- resolution seismic sequence profile, compartmentalize deposit microfacies, confirm strike direction of sandstone and make sure of the distribution range of oil-gas bearing sandstone, and is the gordian technique for the exploration of lithologic gas-oil pool in complicated areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcohols were derivatised to their carbazole-9-N-acetic acid (CRA) esters with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC . HCl) as the dehydrating agent. Studies on derivatisation conditions indicated that the coupling reaction proceeded rapidly and smoothly in the presence of a base catalyst in acetonitrile to give the corresponding sensitively fluorescent derivatives. The retention behaviour of alcohol derivatives was investigated by varying mobile phase compositions (ACN-water and MeOH-water). The parameters from the equation log k'=A-BX were evaluated by retention data of derivatives using an isocratic elution with different mobile phases. The results indicated that the parameters derived allowed computation of retention factors in good agreement with experiments. At the same time, a general equation was derived that makes possible predictions of partition coefficient in binary mobile phases with different proportions of organic solvent to water based on some simple regression analysis. The LC separation for the derivatised alcohols containing higher carbon alcohols showed good reproducibility on a reversed-phase C-18 column with gradient elution. The detection limits (excitation at 335 nm, emission at 360 nm) for derivatised alcohols (signal-to-noise ratio=3:1) were in the range of 0.1-0.4 pg per injection. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of methanol in methanol-water mixed eluents on the capacity factor (P), an important parameter which could depict leaching potential of hydrophobic organic chemicals (HOCs) in soil leaching column chromatography (SLCC), was investigated. Two reference soils, GSE 17201 obtained from Bayer Landwirtschaftszentrum, Monheim, Germany and SP 14696 from LUFA, Spencer, Germany, were used as packing materials in soil columns, and isocratic elution with methanol-water mixtures at different volume fractions of methanol (phi) were tested. Shortterm exposure of the column (packed with the GSE 17201 soil) to the eluents increased solute retention by a certain (23% log-unit) degree evaluated through a correlation with the retention on the same soil column but unpreconditioned by methanol-containing eluents. Long-term exposure of soil columns to the eluents did not influence the solute retention. A log-linear equation, log k' = log k'(w) - Sphi, could well and generally describe the retention of HOCs in SLCC. For the compounds of homologous series, logk'(w), had good linear relationship with S, indicating the hydrophobic partition mechanism existing in the retention process. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degreesC was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degreesC (k'(30)/k'(40)) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C-18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former. (C) 2002 Elsevier Science Ltd. All rights reserved.