273 resultados para POLY(P-PHENYLENEVINYLENE) COPOLYMERS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L-lactide)poly(ethylene glycol) (PLLA-PEG) diblock copolymers were investigated with wideangle X-ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L-lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000-PEG5000 at a larger degree of supercooling was different from that of PLLA2500-PEG5000, PLLA5000-PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Isothermal crystallization kinetics and morphology of the poly(L-lactide) block in poly(L-lactide)poly(ethylene glycol) diblock copolymers were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The results were compared with that of the PLLA homopolymer. The introduction of the PEG block accelerated the crystallization rate of the PLLA block and promoted to form ring-banded spherulites. The analysis of isothermal crystallization kinetics has shown that the PLLA homopolymer accorded with the Avrami equation. But the PLLA block of the diblock copolymers deviated from the Avrami equation, which resulted from increasing of the crystallization rate and occurring of the second crystallization process. The equilibrium melting temperature (T,,) of the PLLA block fell with its molecular weight decreasing. The conditions to obtain more regular ring-banded spherulites were below: the sample was the PLLA block of LA(5) EG(5); the crystallization temperature was about from 95 degrees C to 100 degrees C, which almost corresponded to regime II.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The quasiliving characteristics of the ringopening polymerization of epsilon-caprolactone (CL) catalyzed by an organic amino calcium were demonstrated. Taking advantage of this feature, we synthesized a series of poly (F-caprolactone) (PCL)-poly(L-lactide) (PLA) cliblock copolymers with the sequential addition of the monomers CL and L-lactide. The block structure was confirmed by H-1-NMR, C-13-NMR, and gel permeation chromatography analysis. The crystalline structure of the copolymers was investigated by differential scanning calorimetry and wide-angle X-ray diffraction analysis. When the molecular weight of the PLA block was high enough, phase separation took place in the block copolymer to form PCL and PLA domains, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of both binary poly(ethylene oxide) (PEO)-poly(ethylene oxide-b-dimethylsiloxane) [P(EO-b-DMS)] and ternary[toluene/PEO/P(EO-b-DMS)] systems were determined by light scattering measurements at atmospheric pressure. The phase separation behavior upon cooling in the ternary system has been investigated at atmospheric pressure and under high pressure and compared to the phase behavior in the binary system. The phase transition temperatures have been obtained for all of the samples. As a result, the pressure induces compatibility in the binary mixtures, but for the ternary system, pressure not only can induce mixing but also can induce phase separation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) block in two poly(ethylene terephthalate) (PET)-PEO segmented copolymers was studied with differential scanning calorimetry. The Avrami equation failed to describe the overall crystallization process, but a modified Avrami equation, the Q equation, did. The crystallizability of the PET block and the different lengths of the PEO block exerted strong influences on the crystallization process, the crystallinity, and time final morphology of the PEO block. The mechanism of nucleation and the growth dimension of the PEG block were different because of the crystallizability of time PET block and the compositional heterogeneity. The crystallization of the PEO block was physically constrained by the microstructure of time PET crystalline phase, which resulted in a lower crystallization rate. However, this influence became weak with the increase in the soft-block length. (C) 2000 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Series of thermotropic liquid crystalline poly (aryl ether ketone) s were synthesized by mucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with different difluoromonomers, The relationship between structure and properties of the novel copolymers was investigated. For the copolymers with liquid crystalline properties, their melting transition temperatures show no great change with increase the content of the crystal-disrupting unit. The reason is that the crystal phase is directly transformed from the ordered liquid crystal phase. Side-groups have important effect on mesophase stability, The temperature range of mesophase stability for the chloro-polymers is smaller than those of other series of copolymers (P-phenyl, t-butyl, methoxy, 3-trifluoromethylbenzene). This behavior indicates that the effect of geometric repulsive factor on the thermodynamic stability of the mesophase is much larger than that of the polarizability attractive factor. Different ordered liquid crystal phases are observed in the polymers with different molecular weights. At low molecular weight, highly ordered smectic liquid crystal phases form. With increasing the molecular weight, the ordered degree of the liquid crystals decreases, and only the nematic liquid crystal phase is observed in the polymer with higher molecular weight.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Well-defined block copolymers of L-lactide-b-epsilon-caprolactone were synthesized by sequential polymerization using a rare earth complex, Y(CF3COO)(3)/Al(iso-Bu)(3), as catalyst system. The compositions of the block copolymers could be adjusted by manipulating the feeding ratio of comonomers. The characterizations by GPC, H-1 NMR, C-13 NMR, and DSC displayed that the block copolymer, poly(epsilon-caprolactone-b-L-lactide) [P(CL-b-LLA)], had a narrow molecular weight distribution and well-controlled sequences without random placement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of adding diblock copolymer poly(styrene-b-4-vinylpyridine) (P(S-b-4VPy), to immiscible blends of syndiotactic polystyrene (sPS)/thermoplastic polyurethane (TPU) on the morphology, thermal transition, crystalline structure, and rheological and mechanical properties of the blends has been investigated. The diblock copolymer was synthesized by sequential anionic copolymerization and was melt-blended with sPS and TPU. Scanning electron microscopy (SEM) showed that the added block copolymer reduced the domain size of the dispersed phase in the blends. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) revealed that the extent of compatibility between sPS and TPU affected the crystallization of the sPS in the blends. Tensile strength and elongation at break increased, while the dynamic modulus and complex viscosity decreased with the amount of P(S-b-4VPy) in the blend. The compatibilizing effect of the diblock copolymer is the result of its location at the interface between the sPS and the TPU phases and penetration of the blocks into the: corresponding phases, i.e. the polystyrene block enters the noncrystalline regions of the sPS, and the poly(4-vinylpyridine) block interacts with TPU through intermolecular hydrogen bonding. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The compatibilizing effect and mechanism of compatibilization of the diblock copolymer polystyrene-block-poly(4-vinylpyridine) P(S-b-4VPy) on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)/chlorinated polyethylene (CPE) were studied by means of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), mechanical properties and FTIR measurements. The block copolymer was synthesized by sequential anionic polymerization and melt-blended with PPO and CPE. The results show that the P(S-b-4VPy) added acts as an effective compatibilizer, located at the interface between the PPO and the CPE phase, reducing the interfacial tension, and improving the interfacial adhesion. The tensile strength and modulus of all blends increase with P(S-b-4VPy) content, whereas the elongation at break increases for PPO-rich blends, but decreases for CPE-rich blends. The polystyrene block of the diblock copolymer is compatible with PPO, and the poly(4-vinylpyridine) block and CPE are partially miscible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The poly(monoester (6-[4-(p-nitrophenyl) azo]phenoxy-1-hexyloxy) of maleic anhydride) shows a smectic phase with a focal conic fan texture. With the decrease of the monoestering degree the phase transition temperature decreases and the mesomorphic temperature range becomes narrow. The hydrogen bonding between two carboxylic acid groups was found to play a very important role in forming the smectic phase structure. The smectic bilayer structure has been built through self-assembly via. intermolecular hydrogen bonding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. (C) 1998 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The glass transition temperature (T-g) of mixtures of polystyrene (PS) with different molecular weight and of blends of poly(2,6-dimethyl-p-phenylene oxide) (PPO) and polystyrene with different molecular weight (DMWPS) was studied by a DSC method. For the whole range of composition, the curves of T-g vs composition obtained by experiment were compared with predictions from the Fox, Gordon-Taylor, Couchman and Lu-Weiss, equations. It was found that the experimental results were not in agreement with those from the Fox, Gordon-TayIor and Couchman equations for the binary mixtures of DMWPS, where the interaction parameter chi was approximately zero. However, for the blends PPO/DMWPS (chi < 0), with an increase of molecular weight of PS, it was shown that the experimental results fitted well with those obtained from the Couchman, Gordon-Taylor and Fox equations, respectively. Furthermore, the Gordon-Taylor equation was nearly identical to the Lu-Weiss equation when \chi\ was not very large. Further, the dependence of the change of heat capacity associated with the glass transition (Delta C-p) on the molecular weight of PS was investigated and an empirical equation was presented. (C) 1997 Elsevier Science Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blends of poly(vinyl methyl ether) (PVME) and poly(methyl methacrylate) (PMMA) compatibilized by poly(styrene-block-methyl methacrylate) (P(S-b-MMA)) ale studied by FT-IR, DSC, excimer fluorescence spectrometry, and scanning electron microscopy (SEM). In FT-IR measurement the ratio of absorption intensity at 1107 cm(-1) to that at 1085 cm(-1) (I-1107/I-1085) reaches a minimum at about 10wt% block copolymer content. DSC results show that the glass transition temperature of PVME in the blends has a maximum at 10 wt% copolymer content. In plots of the ratio of excimer-to-monomer fluorescence emission intensities (I-E/I-M) VS block copolymer content, I-E/I-M increases rapidly above 10%. Ail these phenomena show that PS block chains penetrate into PVME: domains on addition of block copolymer. Above 10% copolymer content, block copolymer chains tend to form micelles in bulk phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We synthesized a series of polymers: poly(ether ether ketone ketone)(PEEKK), poly(ether biphenyl ether ketone ketone) (PEBEKK) and their copolymer by polycondensation, We also prepared a series of PEEKK-PEBEKK blends, By using DSC method, we found that T-g of the copolymers and the blends rose with the increasing of biphenyl contents in the polymers, T-c of the copolymers and the blends is higher than the corresponding homopolymer. From the results, we think that PEEKK-PEBEKK copolymer and blends are miscible and the copolymer is random.